Skip to main content
Log in

Influence of Cold-Worked Structure on Electrochemical Properties of Austenitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of cold working on microstructure and structure and thereby on electrochemical behavior of metastable AISI 304L and stable AISI 316L austenitic stainless steels in two different solutions is presented here. The solution-annealed stainless steel (SS) plates were unidirectionally cold rolled at different rolling conditions (with or without interpass cooling and subzero temperature) up to 90 pct reduction in thickness. The X-ray diffraction (XRD) technique was employed to study textures and residual stress development in the stainless steels due to cold working and to quantify the volume fraction of α′-martensite phase formed in the metastable SS. Cold working introduced residual stress and developed texture in both stainless steels. The residual stress and volume fraction of strain-induced α′- martensite phase in 304L SS was varied with the rolling conditions. The study has shown that the type of textures developed in the two stainless steels influenced their electrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. R.W. Hertzborg: Deformation, Fracture Mechanics of Engineering Materials, John Wiley & Sons Inc., New York, NY, 1989

    Google Scholar 

  2. J.W. Brooks, M.H. Loretto, R.E. Smallman: Acta Metall., 1997, vol. 27, pp. 1829–38

    Google Scholar 

  3. D. Goodchild, W.T. Roberts, D.V. Wilson: Acta Metall., 1970, vol. 18, pp. 1137–45.

    Article  CAS  Google Scholar 

  4. M.A. Meyers, K.K. Chawla: Mechanical Behaviour of Materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1998

    Google Scholar 

  5. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley, New York, 1975

    Google Scholar 

  6. P. Mullner, C. Solenthaler: Mater. Sci. Eng. A, 1997, vol. 230, pp. 107–15

    Article  Google Scholar 

  7. F.B. Pickering: Int. Mater. Rev., 1976, vol. 21, pp. 227–68

    CAS  Google Scholar 

  8. R.J. Brigham, W.J. Tozer: Corrosion, 1974, vol. 30, pp. 161–66

    CAS  Google Scholar 

  9. M.A. Streicher: Corrosion, 1974, vol. 30, pp. 77–91

    CAS  Google Scholar 

  10. L.Y.A. Seukins, E.G. Fel’dgandler: Metalloved. Term. Obra Met., 1968, vol. 11, pp. 10–13

    Google Scholar 

  11. A. Tryggve: J. Iron Steel Inst., 1954, vol. 177, pp. 165–74

    Google Scholar 

  12. R.P. Reed: Acta Metall., 1962, vol. 10, pp. 865–77

    Article  CAS  Google Scholar 

  13. R. Langneborg: Acta Metall., 1964, vol. 12, pp. 823–43.

    Article  Google Scholar 

  14. P. Marshal: Austenitic Stainless Steel: Microstructure and Mechanical Properties, Elsevier, London, 1984

    Google Scholar 

  15. I.C. Noyan, J.B. Cohen: Residual Stress Measurement by X-ray Diffraction and Interpretation, Springer Verlag, New York, NY, 1987

    Google Scholar 

  16. A. Bahadur, B. Ravi Kumar, S. Ghosh Chowdhury: Mater. Sci. Technol., 2004, vol. 20, pp. 387–92

    Article  CAS  Google Scholar 

  17. L.G. Schulz: J. Appl. Phys., 1949, vol. 20, pp. 1030–33

    Article  Google Scholar 

  18. K. Pawlik and P. Ozga: LaboTex: The Texture Analysis Software, Göttinger Arbeiten zur Geologie und Paläontologie, SB4, 1999

  19. K. Pawlik: Phys. Staus Solidi B, 1986, vol, 134, pp. 477–83

    Article  Google Scholar 

  20. A.H. Eichelman, F.C. Hull: J. Trans ASM, 1953, vol. 45, pp. 77–104

    Google Scholar 

  21. P.L. Manganon Jr., G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1577–86

    Article  Google Scholar 

  22. P.L. Manganon Jr., G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1587–94

    Article  Google Scholar 

  23. G.B. Olson, M. Cohen: J. Less-Common Met., 1972, vol. 28, pp. 107–18

    Article  CAS  Google Scholar 

  24. S.S. Hecker, M.G. Stout, K.P. Staudhammer, J.L. Smith: Metall. Trans. A, 1982, vol. 13A, pp. 619–26

    Google Scholar 

  25. G.B. Olson, M. Cohen: Metall. Trans. A, 1975, vol. 6A, pp. 791–95

    CAS  Google Scholar 

  26. P.C. Maxwell, A. Goldberg, J.C. Shyne: Metall. Trans., 1974, vol. 5, pp. 1305–17

    Article  CAS  Google Scholar 

  27. F. Lecroisey, A. Pineau: Metall. Trans., 1972, vol. 3, pp. 387–96

    CAS  Google Scholar 

  28. R.P. Reed: Acta Metall., 1962, vol. 10, pp. 865–77

    Article  CAS  Google Scholar 

  29. B. Cina: JISI, 1954, vol. 177, pp. 406–22

    Google Scholar 

  30. J.A. Venables: Phil Mag., 1962, vol. 7, pp. 35–44

    Article  Google Scholar 

  31. J. Dash, H.M. Otte: Acta Metall., 1963, vol. 11, pp. 1169–78

    Article  CAS  Google Scholar 

  32. L.E. Murr, K.P. Staudhammer, S.S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–35

    Google Scholar 

  33. T. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, M. Ichihara: Acta Metall., 1977, vol. 25, pp. 1151–62

    Article  Google Scholar 

  34. J.R. Patel, M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38

    Article  CAS  Google Scholar 

  35. H.M. Otte: Acta Metall., 1957, vol. 5, pp. 614–27

    Article  CAS  Google Scholar 

  36. M.W. Bowkett, S.R. Keown, D.R. Harries: Met. Sci., 1982, vol. 16, pp. 499–517

    Article  CAS  Google Scholar 

  37. K. Takashima, Y. Higo, S. Numomura: Phil. Mag., 1984, vol. 49 A, pp. 231–41

    Google Scholar 

  38. H.C. Shin, T.K. Ha, Y.W. Chang: Scripta Mater., 2001, vol. 45, pp. 823–29

    Article  CAS  Google Scholar 

  39. Z. Tourki, H. Bargui, H. Sidhom: J. Mater. Proc. Technol., 2005, vol. 166, pp. 330–36

    Article  CAS  Google Scholar 

  40. J. Hirsch, K. Lucke: Acta Metall., 1988, vol. 36, pp. 2863–82

    Article  CAS  Google Scholar 

  41. J. Hirsch, K. Lucke: Acta Metall., 1988, vol. 36, pp. 2883–904

    Article  CAS  Google Scholar 

  42. Z.A. Foroulis, H.H. Uhlig: J. Electrochem. Soc., 1964, vol. 111, pp. 522–28

    Article  CAS  Google Scholar 

  43. A. Barbucci, M. Delucchi, M. Panizza, M. Sacco, G. Cerisola: J. Alloys Compounds, 2001, vol. 317, pp. 607–11

    Article  Google Scholar 

  44. S.S. Chouthai, K. Elayaperumal: J. Br. Corr., 1976, vol. 11, pp. 40–43

    Google Scholar 

  45. U.R. Evans: Corrosion and Oxidation of Metals, Edward Arnold Ltd., London, 1960, pp. 386–89

    Google Scholar 

  46. B.C. Syrett, S.S. Wing: Corrosion, 1978, vol. 34, pp. 138–45

    CAS  Google Scholar 

  47. C.J. Semino, P. Pedeferri, G. Burstein, T.P. Hoar: Corr. Sci., 1979, vol. 19, pp. 1069–78.

    CAS  Google Scholar 

  48. J.C. Rowlands: Br. Corr. J., 1976, vol. 11, pp. 195–98

    CAS  Google Scholar 

  49. U.K. Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, Baldev Raj: Corr. Sci., 2002, vol. 44, pp. 2183–98.

    Article  Google Scholar 

  50. U.K. Mudali, S. Ningshen, A.K. Tyagi, R.K. Dayal: Mater. Sci. Forum, 1999, vol. 318–320, pp. 495–502

    Article  Google Scholar 

  51. B. Mazza, P. Pedeferri, D. Sinigaglia, A. Liganda, G.A. Mandora, G. Re, G. Taccani, D. Wenger: J. Electrochem. Soc., 1979, vol. 126, pp. 2075–89

    Article  CAS  Google Scholar 

  52. A. Cigada, G. Rondelli, and B. Vicentini: Proc. Int. Conf. Martensitic Transformation, The Japan Institute of Metals, Sendai, Japan, 1986, pp. 527–32

  53. C. Eckstein, A. Welss, D. Janke, and D. Peisker: Proc. Int. Congr. Stainless Steels 99, Science and Market, Chia Laguna Sardinia, Italy, June 6–9, 1999, Associaziona Italiana di Metallurgia, Italy, 1999, pp. 34–36

  54. H.E. Hanninen: Int. Mater. Rev., 1979, vol. 3, pp. 85–135

    Google Scholar 

  55. C.L. McBee, J. Krugher: Electrochim. Acta, 1972, vol. 17, pp. 1337–41

    Article  CAS  Google Scholar 

  56. S.V. Phadnis, A.K. Satpati, K.P. Muthe, J.C. Vyas, and Sundareshan: Corr. Sci., 2003, vol. 45, pp. 2467–83

  57. A. Barbucci, G. Cerisola, P.L. Carbot: J. Electrochem. Soc., 2002, vol. 149, pp. 534–42

    Article  CAS  Google Scholar 

  58. R. Singh, B. Ravi Kumar, A. Kumar, P.K. Dey, I. Chattoraj: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2441–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor S.P. Mehrotra, Director, National Metallurgical Laboratory, for supporting this work. The authors also record their thanks to Sri P.K. De for helping with cold rolling. The authors record their gratitude to the M/s Salem Steel Plant, Salem, India, for providing the material for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ravi Kumar.

Additional information

Manuscript submitted July 4, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi Kumar, B., Mahato, B. & Singh, R. Influence of Cold-Worked Structure on Electrochemical Properties of Austenitic Stainless Steels. Metall Mater Trans A 38, 2085–2094 (2007). https://doi.org/10.1007/s11661-007-9224-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9224-4

Keywords

Navigation