Skip to main content
Log in

Multistep Cross Rolling of UNS S32101 Steel: Microstructure, Texture, and Magnetic Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, effect of multistep cross rolling (MSCR) on microstructure, texture, and magnetic properties has been investigated for UNS S32101 steel. UNS S32101 steel consisting of almost equal proportion of ferrite and austenite was 80% cold cross rolled in multiple steps. The microstructures were characterized using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscattered diffraction (EBSD), while crystallographic texture was determined by x-ray diffraction (XRD). Microstructure showed decrease in band thickness and spacing for both austenite and ferrite with increased cold-rolling reduction. Lenticular bulges were the main feature of microstructure after 80% cold rolling, indicating the presence of strain-induced martensite (SIM). Hysteresis loops were also measured in order to characterize other parameters associated with deformation and SIM. The magnetic anisotropy decreased, while coercivity (Hc), area under the B-H loop and magnetic losses increased with an increase in cold-rolling reduction. Hc was found to be directly proportional to the amount of reduction during cold rolling and inversely proportional to equivalent circle grain size. As-received sample showed strong cube ({100}< 100 >) with strong Brass ({110}< 112 >) in austenite and strong α (rolling direction, RD//< 110 >) and γ (normal direction, ND//< 111 >) fibers in ferrite. For 80% rolling, strong Brass and Goss ({110}< 001 >) were developed in austenite, while strong rotated cube ({100)< 110 >) and γ-fiber were obtained in ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. M. Breda, K. Brunelli, F. Grazzi, A. Scherillo and I. Calliari, Effects of Cold Rolling and Strain-Induced Martensite Formation in a SAF 2205 Duplex Stainless Steel, Metall. Mater. Trans. A, 2015, 46, p 577–586.

    Article  CAS  Google Scholar 

  2. J. Michalska and M. Sozańska, Qualitative and Quantitative Analysis of σ and χ Phases in 2205 Duplex Stainless Steel, Mater. Charact., 2006, 56, p 355–362.

    Article  CAS  Google Scholar 

  3. A. Kashiwar, N.P. Vennela, S.L. Kamath and R.K. Khatirkar, Effect of Solution Annealing Temperature on Precipitation in 2205 Duplex Stainless Steel, Mater. Charact., 2012, 74, p 55–63.

    Article  CAS  Google Scholar 

  4. R. Gunn, Duplex Stainless Steels- Microstructure, Properties and Applications, Abington Publishing, Cambridge, 1997.

    Book  Google Scholar 

  5. J. Charles, Duplex Stainless Steels, a Review After DSS’07 in Grado, Steel Res. Int., 2008, 79, p 455–465.

    Article  CAS  Google Scholar 

  6. I. Alvarez-Armas, Duplex Stainless Steels: Brief History and Some Recent Alloys, Recent Patents Mech. Eng., 2008, 1, p 51–57.

    Article  CAS  Google Scholar 

  7. H. Sieurin, R. Sandström and E.M. Westin, Fracture Toughness of the Lean Duplexstainless Steel LDX 2101, Metall. Mater. Trans. A, 2006, 37, p 2975–2981.

    Article  Google Scholar 

  8. S. Baldo and I. Mészáros, Effect of Cold Rolling on Microstructure and Magnetic Properties in a Metastable Lean Duplex Stainless Steel, J. Mater. Sci., 2010, 45, p 5339–5346.

    Article  CAS  Google Scholar 

  9. A. Kumar, R.K. Khatirkar, D. Chalapathi, G. Kumar and S. Suwas, Microstructure and Texture Development during Cold Rolling in UNS S32205 and UNS S32760 Duplex Stainless Steels, Metall. Mater. Trans. A, 2017, 48(5), p 2349.

    Article  CAS  Google Scholar 

  10. A. Kumar, R.K. Khatirkar, A. Gupta, S.K. Shekhawat and S. Suwas, Deciphering the Possible Role of Strain Path on the Evolution of Microstructure, Texture, and Magnetic Properties in a Fe-Cr-Ni Alloy, Metall. Mater. Trans. A, 2018, 49(8), p 3402.

    Article  CAS  Google Scholar 

  11. T.H. Chen and J.R. Yang, Effects of Solution Treatment and Continuous Cooling on σ-Phase Precipitation in a 2205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2001, 311(1–2), p 28–41.

    Article  Google Scholar 

  12. S.S.M. Tavares, M.R. da Silva, J.M. Pardal, H.F.G. Abreu and A.M. Gomes, Microstructural Changes Produced by Plastic Deformation in the UNS S31803 Duplex Stainless Steel, J. Mater. Process. Technol., 2006, 180(1–3), p 318–322.

    Article  CAS  Google Scholar 

  13. S. Pramanik, S. Bera and S.K. Ghosh, Influence of Cold Rolling on Microstructural Evolution in 2205 Duplex Stainless Steel, Steel Res. Int., 2013, 85, p 776–783.

    Article  Google Scholar 

  14. R.K. Ray and S. Suwas, Crystallographic Texture of Materials, Springer, Manchester, 2014.

    Google Scholar 

  15. B. Verlinden, J. Driver, I. Samajdar and R. Doherty, Thermo-Mechanical Processing of Metallic Materials, Elsevier, New York, 2007.

    Google Scholar 

  16. C. Herrera, D. Ponge and D. Raabe, Design of a Novel Mn-Based 1 GPa Duplex Stainless TRIP Steel with 60% Ductility by a Reduction of Austenite Stability, Acta Mater., 2011, 59, p 4653–4664.

    Article  CAS  Google Scholar 

  17. E.A. Calnan, Deformation Textures of Face-Centred Cubic Metals, Acta Metall., 1954, 2, p 865–874.

    Article  CAS  Google Scholar 

  18. M. Holscher, D. Raabe and K. Lucke, Rolling and Recrystallization Textures of Bcc Steels, Steel Res., 1991, 62, p 567–575.

    Article  Google Scholar 

  19. I. Samajdar, B. Verlinden and P. Van Houtte, Development of Recrystallization Texture in IF-Steel an Effort to Explain Developments in Global Texture from Microtextural Studies, Acta Mater., 1998, 46, p 2751–2763.

    Article  CAS  Google Scholar 

  20. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, 2015.

    Google Scholar 

  21. P.P. Bhattacharjee and R.K. Ray, Effect of Processing Variables on Cube Texture Formation in Powder Metallurgically Prepared Ni and Ni-W Alloy Tapes for Use as Substrates for Coated Conductor Applications, Mater. Sci. Eng. A, 2007, 459, p 309–323.

    Article  Google Scholar 

  22. R.K. Ray and P.P. Bhattacharjee, Enhancement of Cube Texture in Ni by the Addition of W or Mo, Phil. Mag., 2007, 87, p 2417–2426.

    Article  CAS  Google Scholar 

  23. T. Leffers and R.K. Ray, The Brass-Type Texture and its Deviation from the Copper-Type Texture , Prog. Mater. Sci., 2009, 54, p 351–396.

    Article  CAS  Google Scholar 

  24. E. El-Danaf, S.R. Kalidindi, R.D. Doherty and C. Necker, Deformation Texture Transition in Brass-Critical Role of Micro-Scale Shear Bands, Acta Mater., 2000, 48, p 2665–2673.

    Article  CAS  Google Scholar 

  25. R. Madhavan, R.K. Ray and S. Suwas, Texture Transition in Cold-Rolled Nickel–40 wt.% Cobalt Alloy, Acta Mater., 2014, 78, p 222–235.

    Article  CAS  Google Scholar 

  26. N. Jia, F. Roters, P. Eisenlohr, C. Kords and D. Raabe, Non-crystallographic Shear Banding in Crystal Plasticity FEM Simulations: Example of Texture Evolution in α-Brass, Acta Mater., 2012, 60, p 1099–1115.

    Article  CAS  Google Scholar 

  27. S. Suwas and A.K. Singh, Role of Strain Path Change in Texture Development , Mater. Sci. Eng. A, 2003, 356, p 368–371.

    Article  Google Scholar 

  28. N.P. Gurao, S. Sethuraman and S. Suwas, Effect of Strain Path Change on the Evolution of Texture and Microstructure During Rolling of Copper and Nickel , Mater. Sci. Eng. A, 2011, 528, p 7739–7750.

    Article  CAS  Google Scholar 

  29. S. Wronski, M. Wrobel, A. Baczmanski and K. Wierzbanowski, Effects of Cross-Rolling on Residual Stress, Texture and Plastic Anisotropy in Fcc and Bcc Metals, Mater. Charact., 2013, 77, p 116–126.

    Article  CAS  Google Scholar 

  30. A. Bocker, H. Klein and H.J. Bunge, Development of Cross-Rolling Textures in Armco-Iron, Textures Microstruct., 1970, 12, p 155–174.

    Article  Google Scholar 

  31. Standard practice for preparation of metallographic specimens 1995 E3-95 (PA, USA: ASTM)

  32. D. Aliya, B. L. Adams, and D. Alman, ASM Handbook Volume 9 Metallography and Microstructures. ASM International, 2018

  33. OIM: Analysis Version 7.2. User Manual, TexSEM Laboratories Inc., Draper, 2013

  34. M.M. Nowell and S.I. Wright, Orientation Effects on Indexing of Electron Backscatter Diffraction Patterns, Ultramicroscopy, 2005, 103(1), p 41–58.

    Article  CAS  Google Scholar 

  35. F. Xlong and B.A. Parker, The Determination of Complete Pole Figures Using the Reflection Method, Textures Microstruct., 1984, 6, p 125–135.

    Article  Google Scholar 

  36. F. Bachmann, R. Hielscher and H. Schaeben, Texture Analysis with MTEX–Free and Open Source Software Toolbox Solid State Phenomena, Trans. Tech. Publ., 2010, 5, p 39.

    Google Scholar 

  37. J. Niagaj and Ł Mazur, Ferrite Content Measurements in S32101 Lean Duplex Stainless Steel and Its Welded Joints, Archiv. Metall. Mater., 2012, 57(3), p 780–787.

    Article  Google Scholar 

  38. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-Phase Steels Studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 2010, 527(10–11), p 2738–2746.

    Article  Google Scholar 

  39. R. Kim, C. Bae and J. Kim, Initial Deformation Behaviors in Lean Duplex Stainless Steel, Metals, 2020, 10, p 936.

    Article  CAS  Google Scholar 

  40. G. Wassermann, The Influence of Mechanical Twinning on the Formation of the Texture in Cubic Metals, Z. Met., 1963, 54, p 61–65.

    CAS  Google Scholar 

  41. N. Jia, P. Eisenlohr, F. Roters, D. Raabe and X. Zhao, Orientation Dependence of Shear Banding in Face-Centered-Cubic Single Crystals, Acta Mater., 2012, 60, p 3415–3434.

    Article  CAS  Google Scholar 

  42. L. Anand and C. Su, A Theory for Amorphous Viscoplastic Materials Undergoing Finite Deformations, with Application to Metallic Glasses, J. Mech. Phys. Solids., 2005, 53, p 1362–1396.

    Article  CAS  Google Scholar 

  43. T. Leffers and A.G. Jensen, Development of Rolling Texture in Copper and Brass, Trans. Met. Soc. AIME, 1968, 242, p 314.

    CAS  Google Scholar 

  44. K. Wierzbanowski, M. Wroński and T. Leffers, FCC Rolling Textures Reviewed in the Light of Quantitative Comparisons Between Simulated and Experimental Textures FCC Rolling Textures Reviewed in the Light of Quantitative Comparisons Between Simulations, Crit. Rev. Solid State Mater. Sci., 2014, 39, p 391–422.

    Article  CAS  Google Scholar 

  45. J.G. Sevillano, The Contribution of Macroscopic Shear Bands to the Rolling Texture of Fcc Metals, Science, 1977, 11, p 581–585.

    Google Scholar 

  46. B.J. Duggan, M. Hatherly, W.B. Hutchinson and P.T. Wakefield, Deformation Structures and Textures in Cold-Rolled 70: 30 Brass, Met. Sci., 1978, 12, p 343–351.

    Article  CAS  Google Scholar 

  47. W.B. Hutchinson, B.J. Duggan and M. Hatherly, Development of Deformation Texture and Microstructure in Cold-Rolled Cu-30Zn, Met. Technol., 1979, 6, p 398–403.

    Article  CAS  Google Scholar 

  48. S.R. Kalidindi, R.D. Doherty and C. Necker, Deformation Texture Transition in Brass: Critical Role of Micro-Scale Shear Bands, Acta Mater., 2000, 48, p 2665–2673.

    Article  Google Scholar 

  49. S.R. Kalidindi, Modelling Anisotropic Strain Hardening and Deformation Textures in Low Stacking Fault Energy Fcc Metals, Int. J. Plast., 2001, 17, p 837–860.

    Article  CAS  Google Scholar 

  50. S.-H. Hong and D.N. Lee, Deformation and Recrystallization Textures in Cross-Rolled Copper Sheet, Trans. ASME, 2002, 124(1), p 13–22.

    CAS  Google Scholar 

  51. P.P. Bhattacharjee, S. Saha and J.R. Gatti, Effect of Change in Strain Path During Cold Rolling on the Evolution of Microstructure and Texture in Al and Al-2.5%Mg, J. Mater. Eng. Perform., 2014, 23, p 458–468.

    Article  CAS  Google Scholar 

  52. P.P. Bhattacharjee, M. Joshi, V.P. Chaudhary, J.R. Gatti and M. Zaid, Texture Evolution During Cross-Rolling and Annealing of High Purity Nickel, Metall. Mater. Trans. A, 2013, 44, p 2707–2716.

    Article  CAS  Google Scholar 

  53. P.P. Bhattacharjee, M. Joshi, V.P. Chaudhary and M. Zaid, The Effect of Starting Grain Size on the Evolution of Microstructure and Texture in Nickel During Processing by Cross-Rolling, Mater. Charact., 2013, 76, p 2127.

    Article  Google Scholar 

  54. A. Kumar, R.K. Khatirkar, D. Chalapathi, N. Bibhanshu and S. Suwas, Texture Development During Cold Rolling of Fe-Cr-Ni Alloy-Experiments and Simulations, Phil. Mag., 2017, 97, p 1939–1962.

    Article  CAS  Google Scholar 

  55. A. Kumar, A. Gupta, R.K. Khatirkar and S. Suwas, Texture Development During Cross Rolling of a Dual Phase Fe-Cr-Ni Alloy: Experiments and Simulations, Philos. Mag. Lett., 2018, 98, p 17–26.

    Article  CAS  Google Scholar 

  56. E.J. Gutierrez-Castaneda and A. Salinas-Rodrıguez, Effect of Annealing Prior to Cold Rolling on Magnetic and Mechanical Properties of Low Carbon Non-oriented Electrical Steels, J. Mag. Mag. Mater., 2011, 323, p 2524–2530.

    Article  CAS  Google Scholar 

  57. K. Verbeken, E. Gomes, J. Schneider and Y. Houbaert, Correlation Between the Magnetic Properties and the Crystallographic Texture During the Processing of Non Oriented Electrical Steel, Solid State Phenom., 2010, 160, p 189–194.

    Article  CAS  Google Scholar 

  58. A Martinez-de-Guerenu, F Arizti, I Gutiérrez, , Recovery during annealing in a cold rolled low carbon steel. Part II: Modelling the kinetics, Acta Mater., 2004, 52(12), p 3665–3670.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, VNIT Nagpur for providing the necessary facilities and constant encouragement to publish this paper. The authors would like to acknowledge the use of National Facility for Texture and OIM (A DST-IRPHA project), IIT, Bombay for EBSD, and bulk texture measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Khatirkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dandekar, T.R., Kumar, A., Khatirkar, R.K. et al. Multistep Cross Rolling of UNS S32101 Steel: Microstructure, Texture, and Magnetic Properties. J. of Materi Eng and Perform 30, 2916–2929 (2021). https://doi.org/10.1007/s11665-021-05510-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05510-z

Keywords

Navigation