Skip to main content
Log in

Effects of Various Cross Sections on Elastoplastic Behavior of Fe Nanowires under Tension/Compression

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effects of various cross sections on the mechanical properties of Fe nanowires including their elastic moduli and ultimate strength values using the molecular dynamics simulation. The well-known embedded atom method potential function is employed to model the interaction between the Fe atoms. Young’s moduli are calculated based on the stress–strain diagrams of uniaxial tension and compression tests of the nanowires. The mechanical behavior of bulk Fe metal is also simulated and analyzed to compare its outcomes with the nanowires. According to the results, the tensile/compressive strength values in the bulk model are higher than the nanowires. Besides, in compressive loading, the strength values depend more than tensile loading on the shapes of the cross sections following the order: circular> polygon> square> triangle. However, except for the triangular case, tensile strength values are less sensitive to the change of the shape of the cross section. In addition, different twinning planes and Burgers vectors are found for various cross sections, and their similarities and differences are investigated in detail. Analytic models are also developed for the prediction of the mechanical behavior of nanowires with various cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. F. Sedona et al., Substrate Involvement in Dioxygen Bond Dissociation Catalysed by Iron Phthalocyanine Supported on Ag (100), Chem. Commun., 2018, 54(68), p 9418–9421.

    Article  CAS  Google Scholar 

  2. F. Sedona et al., Tuning the Catalytic Activity of Ag (110)-Supported Fe Phthalocyanine in the Oxygen Reduction Reaction, Nat. Mater., 2012, 11(11), p 970–977.

    Article  CAS  Google Scholar 

  3. D. Dragoni, D. Ceresoli, and N. Marzari, Vibrational and Thermoelastic Properties of bcc Iron from Selected EAM Potentials, Comput. Mater. Sci., 2018, 152, p 99–106.

    Article  CAS  Google Scholar 

  4. H.W.C. Postma, I. Kozinsky, A. Husain, and M.L. Roukes, Dynamic Range of Nanotube-and Nanowire-Based Electromechanical Systems, Appl. Phys. Lett., 2005, 86(22), p 223105.

    Article  Google Scholar 

  5. P. Yang, The Chemistry and Physics of Semiconductor Nanowires, MRS Bull., 2005, 30(2), p 85–91.

    Article  CAS  Google Scholar 

  6. Y. Zhang, S. Rohani, and A.K. Ray, Numerical Determination of Competitive Adsorption Isotherm of Mandelic Acid Enantiomers on Cellulose-Based Chiral Stationary Phase, J. Chromatogr. A, 2008, 1202(1), p 34–39.

    Article  CAS  Google Scholar 

  7. S. Suresh and J. Li, Materials Science: Deformation of the Ultra-Strong, Nature, 2008, 456(7223), p 716.

    Article  CAS  Google Scholar 

  8. W.F. McDonough and S.-S. Sun, The Composition of the Earth, Chem. Geol., 1995, 120(3–4), p 223–253.

    Article  CAS  Google Scholar 

  9. Y. Tan and X. Yang, Molecular Dynamics Simulations on the Tensile Failure of Crystalline CoSb 3 Along Different Orientations, J. Mater. Eng. Perform., 2020, 29(7), p 4659–4668.

    Article  CAS  Google Scholar 

  10. C.M. Lieber, Nanoscale Science and Technology: Building A Big Future from Small Things, MRS Bull., 2003, 28(7), p 486–491.

    Article  CAS  Google Scholar 

  11. H. Liu and J. Zhou, Plasticity in Nanotwinned Polycrystalline Ni Nanowires Under Uniaxial Compression, Mater. Lett., 2016, 163, p 179–182.

    Article  CAS  Google Scholar 

  12. H.A. Wu, Molecular Dynamics Study on Mechanics of Metal Nanowire, Mech. Res. Commun., 2006, 33(1), p 9–16.

    Article  Google Scholar 

  13. E. Dimaggio, D. Narducci, and G. Pennelli, Fabrication of Silicon Nanowire Forests for Thermoelectric Applications by Metal-Assisted Chemical Etching, J. Mater. Eng. Perform., 2018, 27(12), p 6279–6285.

    Article  CAS  Google Scholar 

  14. A.T. Jennings and J.R. Greer, Tensile Deformation of Electroplated Copper Nanopillars, Philos. Mag., 2011, 91(7–9), p 1108–1120.

    Article  CAS  Google Scholar 

  15. C. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, and J. Lou, Strain Rate Dependent Mechanical Properties in Single Crystal Nickel Nanowires, Appl. Phys. Lett., 2013, 102(8), p 83102.

    Article  Google Scholar 

  16. D.-L. Chen and T.-C. Chen, Mechanical Properties of Au Nanowires Under Uniaxial Tension with High Strain-Rate by Molecular Dynamics, Nanotechnology, 2005, 16(12), p 2972.

    Article  CAS  Google Scholar 

  17. S.J.A. Koh, H.P. Lee, C. Lu, and Q.H. Cheng, Molecular Dynamics Simulation of a Solid Platinum Nanowire Under Uniaxial Tensile Strain: Temperature and Strain-Rate Effects, Phys. Rev. B, 2005, 72(8), p 85414.

    Article  Google Scholar 

  18. S. Xu, J.K. Startt, T.G. Payne, C.S. Deo, and D.L. McDowell, Size-Dependent Plastic Deformation of Twinned Nanopillars in Body-Centered Cubic Tungsten, J. Appl. Phys., 2017, 121(17), p 175101.

    Article  Google Scholar 

  19. S. Xu and S.Z. Chavoshi, Uniaxial Deformation of Nanotwinned Nanotubes in Body-Centered Cubic Tungsten, Curr. Appl. Phys., 2018, 18(1), p 114–121.

    Article  Google Scholar 

  20. S. Xu, Y. Su, D. Chen, and L. Li, An Atomistic Study of the Deformation Behavior of Tungsten Nanowires, Appl. Phys. A, 2017, 123(12), p 788.

    Article  CAS  Google Scholar 

  21. W. Liang, M. Zhou, and F. Ke, Shape Memory Effect in Cu Nanowires, Nano Lett., 2005, 5(10), p 2039–2043.

    Article  CAS  Google Scholar 

  22. K.C. Katakam, P. Gupta, and N. Yedla, Large-Scale Molecular Dynamics Simulation Studies on defOrmation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis, J. Mater. Eng. Perform., 2019, 28(1), p 63–78.

    Article  CAS  Google Scholar 

  23. J.R. Greer, J.-Y. Kim, and M.J. Burek, The in-Situ Mechanical Testing of Nanoscale Single-Crystalline Nanopillars, Jom, 2009, 61(12), p 19.

    Article  Google Scholar 

  24. L. Li and M. Han, Molecular Dynamics Simulations on Tensile Behaviors of Single-Crystal Bcc Fe Nanowire: effects of Strain Rates and Thermal Environment, Appl. Phys. A Mater. Sci. Process., 2017 https://doi.org/10.1007/s00339-017-1062-7

    Article  Google Scholar 

  25. A. Cao, Shape Memory Effects and Pseudoelasticity in Bcc Metallic Nanowires, J. Appl. Phys., 2010, 108(11), p 113531.

    Article  Google Scholar 

  26. J.-Y. Kim and J.R. Greer, Tensile and Compressive Behavior of Gold and Molybdenum Single Crystals at the Nano-Scale, Acta Mater., 2009, 57(17), p 5245–5253.

    Article  CAS  Google Scholar 

  27. G. Sainath and B.K. Choudhary, Deformation Behaviour of Body Centered Cubic Iron Nanopillars Containing Coherent Twin Boundaries, Philos. Mag., 2016, 96(32–34), p 3502–3523.

    Article  CAS  Google Scholar 

  28. S. Li, X. Ding, J. Li, X. Ren, J. Sun, and E. Ma, High-Efficiency Mechanical Energy Storage and Retrieval Using Interfaces in Nanowires, Nano Lett., 2010, 10(5), p 1774–1779.

    Article  CAS  Google Scholar 

  29. S. Saha, S. Mojumder, M. Mahboob, and M.Z. Islam, Effect of Temperature and Geometric Parameters on Elastic Properties of Tungsten Nanowire: A Molecular Dynamics Study, AIP Conf. Proc., 2016, 1754(1), p 30009.

    Article  Google Scholar 

  30. S. Saha, M.A. Motalab, and M. Mahboob, Investigation on Mechanical Properties of Polycrystalline W Nanowire, Comput. Mater. Sci., 2017, 136, p 52–59.

    Article  CAS  Google Scholar 

  31. H. Zhan, Y. Gu, and H.S. Park, Beat Phenomena in Metal Nanowires, and Their Implications for Resonance-Based Elastic Property Measurements, Nanoscale, 2012, 4(21), p 6779–6785.

    Article  CAS  Google Scholar 

  32. Y. Gao and H.M. Urbassek, Evolution of Plasticity in Nanometric Cutting of Fe Single Crystals, Appl. Surf. Sci., 2014, 317, p 6–10.

    Article  CAS  Google Scholar 

  33. C.J. Healy and G.J. Ackland, Molecular Dynamics Simulations of Compression–Tension Asymmetry in Plasticity of Fe Nanopillars, Acta Mater., 2014, 70, p 105–112.

    Article  CAS  Google Scholar 

  34. G. Sainath and B.K. Choudhary, Orientation Dependent Deformation Behaviour of BCC Iron Nanowires, Comput. Mater. Sci., 2016, 111, p 406–415.

    Article  CAS  Google Scholar 

  35. A. Dutta, Compressive Deformation of Fe Nanopillar at High Strain Rate: Modalities of Dislocation Dynamics, Acta Mater., 2017, 125, p 219–230.

    Article  CAS  Google Scholar 

  36. S. Dai et al., Elastic Properties of GaN Nanowires: Revealing the Influence of Planar Defects on Young’s Modulus at Nanoscale, Nano Lett., 2015, 15(1), p 8–15.

    Article  CAS  Google Scholar 

  37. S. Plimpton, Fast Parallel Algorithms for shOrt-Range Molecular Dynamics, J. Comput. Phys., 1995, 117(1), p 1–19.

    Article  CAS  Google Scholar 

  38. M.S. Daw, S.M. Foiles, and M.I. Baskes, The Embedded-Atom Method: a Review of Theory and Applications, Mater. Sci. Reports, 1993, 9(7–8), p 251–310. https://doi.org/10.1016/0920-2307(93)90001-U

    Article  CAS  Google Scholar 

  39. Y. Zhao, X. Peng, T. Fu, R. Sun, C. Feng, and Z. Wang, MD Simulation of Nanoindentation on (001) and (111) Surfaces of Ag–Ni multilayers, Phys. E Low-dimensional Syst. Nanostructures, 2015, 74, p 481–488.

    Article  CAS  Google Scholar 

  40. M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta, Development of new Interatomic Potentials Appropriate for Crystalline and Liquid Iron, Philos. Mag., 2003, 83(35), p 3977–3994.

    Article  CAS  Google Scholar 

  41. G. Sainath and B.K. Choudhary, Atomistic Simulations on Ductile-Brittle Transition in< 111> BCC Fe Nanowires, J. Appl. Phys., 2017, 122(9), p 95101.

    Article  Google Scholar 

  42. S.L. Frederiksen and K.W. Jacobsen, Density Functional Theory Studies of Screw Dislocation Core Structures in Bcc Metals, Philos. Mag., 2003, 83(3), p 365–375.

    Article  CAS  Google Scholar 

  43. W.P. Davey, Precision Measurements of the Lattice Constants of Twelve Common Metals, Phys. Rev., 1925, 25(6), p 753.

    Article  CAS  Google Scholar 

  44. K.S. Cheung and S. Yip, Atomic-Level Stress in an Inhomogeneous System, J. Appl. Phys., 1991, 70(10), p 5688–5690.

    Article  CAS  Google Scholar 

  45. M. Zhou, “A new Look at the Atomic Level Virial Stress: on Continuum-Molecular System Equivalence, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 2003, 459(2037), p 2347–2392.

    Article  CAS  Google Scholar 

  46. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Rev. B, 1998, 58(17), p 11085–11088. https://doi.org/10.1103/PhysRevB.58.11085

    Article  CAS  Google Scholar 

  47. A. Stukowski and K. Albe, Extracting Dislocations and Non-Dislocation Crystal Defects from Atomistic Simulation Data, Model. Simul. Mater. Sci. Eng., 2010, 18(8), p 85001. https://doi.org/10.1088/0965-0393/18/8/085001

    Article  CAS  Google Scholar 

  48. J.D. Honeycutt and H.C. Andersen, Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters, J. Phys. Chem., 1987, 91(19), p 4950–4963.

    Article  CAS  Google Scholar 

  49. T. Uehara et al., A Molecular Dynamics Study on the Effects of Lattice Defects on the Phase Transformation from BCC to FCC Structures, Mater. Sci. Appl, 2019, 10(08), p 543.

    CAS  Google Scholar 

  50. B. Azizi, S. Rezaee, M.J. Hadianfard, and K.H. Dehnou, A Comprehensive Study on the Mechanical Properties and Failure Mechanisms of Graphyne Nanotubes (GNTs) in Different Phases, Comput. Mater. Sci., 2020, 182, p 109794.

    Article  CAS  Google Scholar 

  51. M. Chen, H. Zhan, Y. Zhu, H. Wu, and Y. Gu, Mechanical Properties of Penta-Graphene Nanotubes, J. Phys. Chem. C, 2017, 121(17), p 9642–9647.

    Article  CAS  Google Scholar 

  52. Y. Gao, C.J. Ruestes, and H.M. Urbassek, Nanoindentation and Nanoscratching of Iron: Atomistic Simulation of Dislocation Generation and Reactions, Comput. Mater. Sci., 2014, 90, p 232–240.

    Article  CAS  Google Scholar 

  53. S. Mahajan, Accommodation at Deformation Twins in Bcc Crystals, Metall. Trans. A, 1981, 12(3), p 379–386.

    Article  CAS  Google Scholar 

  54. H.W. Paxton, Experimental Verification of the Twin System in Alpha-Iron, Acta Metall., 1953, 1(2), p 141–143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Masoud Seyyed Fakhrabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souq, S.M.N., Ghasemi, F.A. & Fakhrabadi, M.M.S. Effects of Various Cross Sections on Elastoplastic Behavior of Fe Nanowires under Tension/Compression. J. of Materi Eng and Perform 32, 423–437 (2023). https://doi.org/10.1007/s11665-022-07091-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07091-x

Keywords

Navigation