Skip to main content
Log in

Molecular dynamics simulations on tensile behaviors of single-crystal bcc Fe nanowire: effects of strain rates and thermal environment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were applied to investigate tensile behaviors of single-crystal Fe nanowire in 〈001〉 direction under different strain rates. Results show that the nanowire deforms by twinning with elements of K 1 = {112}, η2 = 〈111〉 and reorients from 〈001〉 to 〈110〉 in the tensile direction. Under low strain rate, tensile stress abruptly drops to zero after strain exceeds a critical value, and the nanowire fractures in a bcc structure. In contrast, tensile stress shows a nonlinear tail and the nanowire fractures in an amorphous configuration at high strain rate, and the higher the strain rate, the longer the tail will be. Furthermore, it demonstrates that Young’s modulus and yield stress are independent from strain rates at low temperature, and that both two properties and yield strain decrease as temperature increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Refecrences

  1. S. Suresh, J. Li, Deformation of the ultra-strong. Nature 456, 716–717 (2008)

    Article  ADS  Google Scholar 

  2. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001)

    Article  ADS  Google Scholar 

  3. R. Becham, E. Johnston-Halperin, Y. Luo et al., Bridging dimensions: demultiplexing ultrahigh-density nanowire circuits. Science 310, 465–468 (2005)

    Article  ADS  Google Scholar 

  4. C.M. Lieber, Nanoscale science and technology: building a big future from small things. MRS Bull. 28, 486–491 (2003)

    Article  Google Scholar 

  5. P. Yang, The chemistry and physics of semiconductor nanowires. MRS Bull. 30, 85–89 (2005)

    Article  Google Scholar 

  6. S. Li, X. Ding, J. Li et al., High-efficiency mechanical energy storage and retrieval using interfaces in nanowires. Nano Lett. 10, 1774 (2010)

    Article  ADS  Google Scholar 

  7. K. Xu, X.J. Tian, H.B. Yu et al., Large-scale assembly of Cu/CuO nanowires for nano-electronic device fabrication. Sci. China Tech. Sci. 57, 734–737 (2014)

    Article  Google Scholar 

  8. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  9. A. Alavi, K. Mirabbaszadeh, P. Nayebi et al., Molecular dynamics simulation of mechanical properties of Ni–Al nanowires. Comp. Mater. Sci. 50, 10–14 (2010)

    Article  Google Scholar 

  10. J. Zhu, D. Shi, Reorientation mechanisms and pseudoelasticity in iron nanowires. J. Phys. D Appl. Phys. 44, 055404 (2011)

    Article  ADS  Google Scholar 

  11. L. Sandoval, H.M. Urbassek, Transformation pathways in the solid-solid phase transitions of iron nanowire. Appl. Phys. Lett. 95, 191909 (2009)

    Article  ADS  Google Scholar 

  12. L. Sandoval, H.M. Urbassek, Finite-size effects in Fe-nanowire solid–solid phase transitions: a molecular dynamics approach. Nano Lett. 9, 2290–2294 (2009)

    Article  ADS  Google Scholar 

  13. S. Li, X. Ding, J. Deng et al., Superelasticity in bcc nanowires by a reversible twinning mechanism. Phys. Rev. B 82, 205435 (2010)

    Article  ADS  Google Scholar 

  14. P. Wang, W. Chou, A. Nie et al., Molecular dynamics simulation on deformation mechanisms in body-centered-cubic molybdenum nanowires. J. Appl. Phys. 110, 093521 (2011)

    Article  ADS  Google Scholar 

  15. G. Sainath, B. Choudhary, T. Jayakumar, Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behavior of body centred cubic iron nanowire. Comp. Mater. Sci. 104, 76–83 (2015)

    Article  Google Scholar 

  16. G. Sainath, B.K. Choudhary, Orientation dependent deformation behavior of BCC iron nanowires. Comp. Mater. Sci. 111, 406–415 (2016)

    Article  Google Scholar 

  17. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  18. M.S. Daw, S.M. Foiles, M.I. Baskes, The embedded-atom method: a review of theory and applications. Mater. Sci. Rep. 9, 251–310 (1993)

    Article  Google Scholar 

  19. M. Mendelev, S. Han, D. Srolovitz et al., Development of new interatomic potentials appropriate for crystalline and liquid iron. Phil. Mag. 83, 3977–3994 (2003)

    Article  ADS  Google Scholar 

  20. H. Ikeda, Y. Qi, T. Cagin et al., Strain rate induced amorphization in metallic nanowires. Phys. Rev. Lett. 82, 2900–2903 (1999)

    Article  ADS  Google Scholar 

  21. R.W. Cahn, P. Haasen, Physical metallurgy (Elsiver, Amsterdam, 1996), p. 1908

    Google Scholar 

  22. L. Li, M. Han, G. Xiong, C. Li, A Molecular dynamics study on shearing single crystal iron. J. Wuhan Univ. Technol. Mater. Sci. Ed. (2016) (under review)

  23. J.W. Christian, S. Mahajan, Deformation twinning. Prog. Mater Sci. 39, 1–157 (1995)

    Article  Google Scholar 

  24. L. Li, M. Han, Shearing single crystal copper in molecular dynamics simulation at different temperatures. Comp. Mater. Sci. 87, 145–149 (2014)

    Article  Google Scholar 

  25. L. Li, M. Han, Shear behaviors of single crystal nickel at different temperatures: molecular dynamics simulations. Appl. Phys. A 119, 1101–1107 (2015)

    Article  ADS  Google Scholar 

  26. M. Friák, M. Sob, V. Vitek, Ab initio calculation of tensile strength in iron. Philos. Mag. 83, 3529–3537 (2003)

    Article  ADS  Google Scholar 

  27. S. Saha, M. Motalab, M. Mahboob, Investigation on mechanical properties of polycrystalline W nanowire. Comp. Mater. Sci. 136, 52–59 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China under Grant number 51071125; the Natural Science Foundation of Fujian Province under Grant number 2015J05087; and the Natural Science Foundation of Jiangxi Province under Grant number 20161ACB20010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 7772 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Han, M. Molecular dynamics simulations on tensile behaviors of single-crystal bcc Fe nanowire: effects of strain rates and thermal environment. Appl. Phys. A 123, 450 (2017). https://doi.org/10.1007/s00339-017-1062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1062-7

Navigation