Skip to main content
Log in

Mechanical Responses and Dynamic Recrystallization Mechanism of A356 Alloy during Single and Double Isothermal Compression Processes

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The impacts of loading conditions on the mechanical response and DRX of A356 during single and double thermal compression were investigated. The results indicate that the strain hardening rate obtained during the second isothermal compression is far larger than that obtained during the initial isothermal compression. The microstructure after both single and double compression is dominated by deformed columnar grains and equiaxed recrystallized grains. The recrystallization fraction of the samples after double compression is greatly affected by its initial dislocation density and microstructure state. The microstructure examination shows that the evolution of the subgrain boundaries around the original grain boundaries and within the deformed columnar grains is the main mechanism for recrystallized grain formation in the A356 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. M. Raugei, D. Morrey, A. Hutchinson and P. Winfield, A Coherent Life Cycle Assessment of a Range of Lightweighting Strategies for Compact Vehicles, J. Clean. Prod., 2015, 108, p 1168–1176. https://doi.org/10.1016/j.jclepro.2015.05.100

    Article  CAS  Google Scholar 

  2. Z.L. Liang, Q. Zhang, L.Q. Niu et al., Hot Deformation Behavior and Processing Maps of as-Cast Hypoeutectic Al-Si-Mg Alloy[J], J. Mater. Eng. Perform, 2019, 28(8), p 4871–4881. https://doi.org/10.1007/s11665-019-04229-2

    Article  CAS  Google Scholar 

  3. M. Tisza and I. Czinege, Comparative Study of the Application of Steels and Aluminum in Lightweight Production of Automotive Parts, Int. J. Lightweight. Mater. Manu., 2018 https://doi.org/10.1016/j.ijlmm.2018.09.001

    Article  Google Scholar 

  4. Q. Zhang, M. Cao, D. Zhang, S. Zhang and J. Sun, Research on Integrated Casting and Forging Process of Aluminum Automobile Wheel, Adv. Mech. Eng., 2014, 6, p 870182. https://doi.org/10.1155/2014/870182

    Article  Google Scholar 

  5. M.J. Roy, D.M. Maijer and L. Dancoine, Constitutive Behavior of as-Cast A356, Mater. Sci. Eng. A., 2012, 548, p 195–205.

    Article  CAS  Google Scholar 

  6. N. Haghdadi, A. Zarei-Hanzaki and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain, Mater. Sci. Eng. A., 2012, 535, p 252–257. https://doi.org/10.1016/j.msea.2011.12.076

    Article  CAS  Google Scholar 

  7. Y. Lin, S.-C. Luo, L.-X. Yin and J. Huang, Microstructural Evolution and High Temperature Flow Behaviors of a Homogenized Sr-Modified Al-Si-Mg Alloy, J. Alloys Compd., 2018, 739, p 590–599. https://doi.org/10.1016/j.jallcom.2017.12.278

    Article  CAS  Google Scholar 

  8. L.I. Dong-feng, Z. Duan-zheng, L. Sheng-dan, S. Zhao-jun, Z. Xin-ming, W. Qin and H. Su-qi, Dynamic Recrystallization Behavior of 7085 Aluminum Alloy During Hot Deformation, Trans. Nonferrous Metals Soc. China, 2016, 26(6), p 1491–1497. https://doi.org/10.1016/S1003-6326(16)64254-1

    Article  CAS  Google Scholar 

  9. N. Haghdadi, A. Zarei-Hanzaki, H.R. Abedi, D. Abou-Ras, M. Kawasaki and A.P. Zhiyaev, Evolution of Microstructure and Mechanical Properties in a Hypoeutectic Al-Si-Mg Alloy Processed by Accumulative Back Extrusion, Mater. Sci. Eng. A., 2016, 651, p 269–279. https://doi.org/10.1016/j.msea.2015.10.066

    Article  CAS  Google Scholar 

  10. Q.Y. Yang, Z.H. Deng, Z.Q. Zhang, Q. Liu, Z.H. Jia and G.J. Huang, Effects of Strain Rate on Flow Stress Behavior and Dynamic Recrystallization Mechanism of Al-Zn-Mg-Cu Aluminum Alloy During Hot Deformation, Mater. Sci, Eng, A, 2016, 662, p 204–213. https://doi.org/10.1016/j.msea.2016.03.027

    Article  CAS  Google Scholar 

  11. Y. Wu, H.C. Liao, J. Yang and K.X. Zhou, Effect of Si Content on Dynamic Recrystallization of Al-Si-Mg Alloys During Hot Extrusion, J. Mater. Sci. Techno., 2014, 30, p 1271–1277. https://doi.org/10.1016/j.jmst.2014.07.011

    Article  CAS  Google Scholar 

  12. J.M. García-Infanta, A.P. Zhilyaev, F. Carreño, O.A. Ruano, J.Q. Su, S.K. Menon and T.R. McNelley, Strain Path and Microstructure Evolution during Severe Deformation Processing of an as-Cast Hypoeutectic Al–Si Alloy, J. Mater. Sci., 2010, 45, p 4613–4620. https://doi.org/10.1007/s10853-010-4530-4

    Article  CAS  Google Scholar 

  13. S.K. Chaudhury, V. Warke, S. Shankar and D. Apelian, Localized Recrystallization in Cast Al–Si–Mg Alloy during Solution Heat Treatment: Dilatometric and Calorimetric Studies, Metall. Mater. Trans. A., 2011, 42A, p 3160–3169. https://doi.org/10.1007/s11661-011-0716-x

    Article  CAS  Google Scholar 

  14. H.K. Zhang, H. Xiao, X.W. Fang, Q. Zhang, R.E. Logé and K. Huang, A Critical Assessment of Experimental Investigation of Dynamic Recrystallization of Metallic Materials, Mater. Design., 2020, 193, p 108873. https://doi.org/10.1016/j.matdes.2020.108873

    Article  CAS  Google Scholar 

  15. Z.L. Liang and Q. Zhang, Quasi-Static Loading Responses and Constitutive Modeling of Al-Si-Mg, Metals, 2018, 8(10), p 1–11.

    Article  Google Scholar 

  16. H. Wu, S.P. Wen, H. Huang, B.L. Li, X.L. Wu, K.Y. Gao, W. Wang and Z.R. Nie, Effects of Homogenization on Precipitation of Al3(Er, Zr) Particles and Recrystallization Behavior in a New Type Al-Zn-Mg-Er-Zr Alloy, Mater. Sci. Eng. A., 2017, 689, p 313–322. https://doi.org/10.1016/j.msea.2017.02.071

    Article  CAS  Google Scholar 

  17. K. Huang and R.E. Logé, Microstructure and Flow Stress Evolution during Hot Deformation of 304L Austenitic Stainless Steel in Variable Thermomechanical Conditions, Mater. Sci. Eng. A, 2018, 711, p 600–610. https://doi.org/10.1016/j.msea.2017.11.042

    Article  CAS  Google Scholar 

  18. B. Devincre, T. Hoc and L. Kubin, Dislocation Mean Free Paths and Strain Hardening of Crystals, Science, 2008, 320(5884), p 1745–1748. https://doi.org/10.1126/science.1156101

    Article  CAS  Google Scholar 

  19. F. Barlat, M.V. Glazov, J.C. Brem and D.J. Lege, A Simple Model for Dislocation Behavior, Strain and Strain Rate Hardening Evolution in Deformation Aluminum Alloys, Int. J. Plasticity., 2002, 18, p 919–939. https://doi.org/10.1016/S0749-6419(01)00015-8

    Article  CAS  Google Scholar 

  20. V.V. Bulatov, L.L. Hsiung, M. Tang, A. Arsenlis, M.C. Bartelt, W. Cai, J.N. Florando, M. Hiratani, M. Rhee, G. Hommes, T.G. Pierce and T.D. Rubia, Dislocations Multi-Junctions and Strain Hardening, Nature, 2006, 440, p 1174–1178. https://doi.org/10.1038/nature04658

    Article  CAS  Google Scholar 

  21. K.K. Li, M.S. Chen, Y.C. Lin and W.Q. Yuan, Microstructure Evolution of an Aged Ni-Based Superalloy under Two-Stage Hot Compression with Different Strain Rates, Mater. Design., 2016, 111, p 344–352. https://doi.org/10.1016/j.matdes.2016.09.007

    Article  CAS  Google Scholar 

  22. K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Design., 2016, 111, p 548–574.

    Article  CAS  Google Scholar 

  23. M.S. Chen, Z.H. Zou, Y.C. Lin and K.K. Li, Hot Deformation Behaviors of a Solution-Treated Ni-Based Superalloy under Constant and Changed Strain Rates, Vacuum, 2018, 155, p 531–538. https://doi.org/10.1016/j.vacuum.2018.06.059

    Article  CAS  Google Scholar 

  24. K. Huang, K. Marthinsen, Q.L. Zhao and R.E. Logé, The Double-Edge Effect of Second-Phase Particles on the Recrystallization Behavior and Associated Mechanical Properties of Metallic Materials, Prog. Mater. Sci., 2018, 92, p 284–359. https://doi.org/10.1016/j.pmatsci.2017.10.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Gansu Province Science and Technology Funds for Youths (Project Number: 21JR7RA263). This paper is also supported by the National Natural Science Foundation of China (Project Number: 51875441).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenglong Liang or Qi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Niu, L., Li, H. et al. Mechanical Responses and Dynamic Recrystallization Mechanism of A356 Alloy during Single and Double Isothermal Compression Processes. J. of Materi Eng and Perform 31, 10081–10088 (2022). https://doi.org/10.1007/s11665-022-07053-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07053-3

Keywords

Navigation