Skip to main content
Log in

Investigation of Microstructural, Mechanical, Wear, and Corrosion Properties of Mg-Sb-La Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructural, mechanical, corrosion properties, and wear behaviors of as-cast Mg-Sb-based alloys with various La contents (0, 1, 2, and 4 wt.%) were investigated. The microstructural properties were analyzed by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The tensile and microhardness tests were carried out to examine the mechanical properties. Corrosion properties were investigated in 3.5 wt.% NaCl using both electrochemical and immersion tests. Wear tests were carried out at three different loads of 10, 20 and 40 N and at three different sliding speeds of 0.3, 0.6 and 1.2 m/s. The results showed that the Mg-Sb alloy had α-Mg and Mg3Sb2 phases, and La4Sb, LaSb and Mg17La2 phases were formed by the addition of La. The yield strength and hardness continuously increased along with the increasing La content, while tensile strength and ductility first increased and then decreased by the addition of 2 wt.% La. It was observed that the corrosion resistance improved by the addition of 1 wt.% La, and the addition of more La worsened the corrosion resistance, and the best wear rate was obtained by the addition of 1 wt.% La.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Liu, B. Zhou, G. Wu, L. Zhang, X. Peng, and L. Cao, High Temperature Mechanical Behavior of Low-Pressure Sand-Cast Mg‐Gd‐Y‐Zr Magnesium Alloy, J. Magnes. Alloys, 2019, 7(4), p 597–604. https://doi.org/10.1016/j.jma.2019.07.006

    Article  CAS  Google Scholar 

  2. B.L. Mordike and T. Ebert, Magnesium: Properties—Applications—Potential, Mater. Sci. Eng. A, 2001, 302(1), p 37–45. https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  3. W. Hu, Q. Le, Z. Zhang, L. Bao, and J. Cui, Numerical Simulation of DC Casting of AZ31 Magnesium Slab at Different Casting Speeds, J. Magnes. Alloys, 2013, 1(1), p 88–93. https://doi.org/10.1016/j.jma.2013.02.010

    Article  CAS  Google Scholar 

  4. D. Mehra, M.M. Mahapatra, and S.P. Harsha, Processing of RZ5-10wt% TiC In-Situ Magnesium Matrix Composite, J. Magnes. Alloys, 2018, 6(1), p 100–105. https://doi.org/10.1016/j.jma.2018.01.002

    Article  CAS  Google Scholar 

  5. W. Liu, B. Zhou, G. Wu, L. Zhang, X. Peng, and L. Cao, High Temperature Mechanical Behavior of Low-Pressure Sand-Cast Mg-Gd-Y-Zr Magnesium Alloy, J. Magnes. Alloys, 2019, 7(4), p 597–604. https://doi.org/10.1016/j.jma.2019.07.006

    Article  CAS  Google Scholar 

  6. A. Baghani, H. Khalilpour, and S.M. MIRESMAEILI, Microstructural Evolution and Creep Properties of Mg-4sn Alloys by Addition of Calcium Up to 4 wt.%, Trans. Nonferrous Met. Soc. China, 2020, 30(4), p 896–904. https://doi.org/10.1016/S1003-6326(20)65263-3

    Article  CAS  Google Scholar 

  7. W. Liu, L. Jiang, L. Cao, J. Mei, G. Wu, S. Zhang, L. Xiao, S. Wang, and W. Ding, Fatigue Behavior and Plane-Strain Fracture Toughness of Sand-Cast Mg‐10Gd‐3Y‐0.5 Zr Magnesium Alloy, Mater. Des., 2014, 59, p 466–474. https://doi.org/10.1016/S1003-6326(20)65263-3

    Article  CAS  Google Scholar 

  8. W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, and B.S. You, Strengthening Mechanisms of Indirect-Extruded Mg‐Sn Based Alloys at Room Temperature, J. Magnes. Alloys, 2014, 2(4), p 299–304. https://doi.org/10.1016/j.jma.2014.11.003

    Article  CAS  Google Scholar 

  9. M. Yang, F. Pan, R. Cheng, and A. Tang, Effect of Mg‐10sr Master Alloy on Grain Refinement of AZ31 Magnesium Alloy, Mater. Sci. Eng., A, 2008, 491(1–2), p 440–445. https://doi.org/10.1016/j.msea.2008.02.017

    Article  CAS  Google Scholar 

  10. X.P. Lin, Y. Kuo, L. Wang, J. Ye, C. Zhang, W. Li, and K.Y. Guo, Refinement and Strengthening Mechanism of Mg‐Zn‐Cu‐Zr‐Ca Alloy Solidified Under Extremely High Pressure, Trans. Nonferrous Met. Soc. China, 2021, 31(6), p 1587–1598. https://doi.org/10.1016/S1003-6326(21)65600-5

    Article  CAS  Google Scholar 

  11. J.A. Yasi, L.G. Hector Jr., and D.R. Trinkle, First-Principles Data for Solid-Solution Strengthening of Magnesium: from Geometry and Chemistry to Properties, Acta Mater., 2010, 58(17), p 5704–5713. https://doi.org/10.1016/j.actamat.2010.06.045

    Article  CAS  Google Scholar 

  12. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu, The Microstructure, Tensile Properties, and Creep Behavior of As-Cast Mg‐(1–10)% Sn Alloys, J. Alloys Compd., 2007, 440(1–2), p 122–126. https://doi.org/10.1016/j.jallcom.2006.09.024

    Article  CAS  Google Scholar 

  13. H. Fu, J. Guo, W. Wu, B. Liu, and Q. Peng, High Pressure Aging Synthesis of a Hexagonal Mg2Sn Strengthening Precipitate in Mg‐Sn Alloys, Mater. Lett., 2015, 157, p 172–175. https://doi.org/10.1016/j.matlet.2015.05.087

    Article  CAS  Google Scholar 

  14. N. Stanford, J.R. TerBush, M. Setty, and M.R. Barnett, Grain Refinement of an Extruded Mg Alloy Via Na Microalloying, Metall. Mater. Trans. A, 2013, 44(6), p 2466–2469. https://doi.org/10.1007/s11661-013-1712-0

    Article  CAS  Google Scholar 

  15. H.S. Brar, J. Wong, and M.V. Manuel, Investigation of the Mechanical and Degradation Properties of Mg‐Sr and Mg‐Zn‐Sr Alloys for Use as Potential Biodegradable Implant Materials, J. Mech. Behav. Biomed. Mater., 2012, 7, p 87–95. https://doi.org/10.1016/j.jmbbm.2011.07.018

    Article  CAS  Google Scholar 

  16. S. Gavras, S.M. Zhu, J.F. Nie, M.A. Gibson, and M.A. Easton, On the Microstructural Factors Affecting Creep Resistance of Die-Cast Mg‐La-Rare Earth (Nd, Y or Gd) Alloys, Mater. Sci. Eng. A, 2016, 675, p 65–75. https://doi.org/10.1016/j.msea.2016.08.046

    Article  CAS  Google Scholar 

  17. M. Paliwal and I.H. Jung, Thermodynamic Modeling of the Mg‐Bi and Mg‐Sb Binary Systems and Short-Range-Ordering Behavior of the Liquid Solutions, Calphad, 2009, 33(4), p 744–754. https://doi.org/10.1016/j.calphad.2009.10.002

    Article  CAS  Google Scholar 

  18. R. Rajeshkumar, J. Jayaraj, A. Srinivasan, and U.T.S. Pillai, Investigation on the Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Sb and Mg-Sb-Si Alloys, J. Alloys Compd., 2017, 691, p 81–88. https://doi.org/10.1016/j.jallcom.2016.08.219

    Article  CAS  Google Scholar 

  19. F. Gao, S.L. Wang, C.P. Wang, and X.J. Liu, Thermodynamic Assessments of the Sb‐La and Sb‐Tb Systems, Calphad, 2012, 37, p 158–162. https://doi.org/10.1016/j.calphad.2012.01.002

    Article  CAS  Google Scholar 

  20. R. Alizadeh and R. Mahmudi, Effect of Sb Additions on the Microstructural Stability and Mechanical Properties of Cast Mg‐4Zn Alloy, Mater. Sci. Eng. A, 2010, 527(20), p 5312–5317. https://doi.org/10.1016/j.msea.2010.05.029

    Article  CAS  Google Scholar 

  21. G. Nayyeri, R. Mahmudi, and F. Salehi, The Microstructure, Creep Resistance, and High-Temperature Mechanical Properties of Mg-5Sn Alloy With Ca and Sb Additions, and Aging Treatment, Mater. Sci. Eng. A, 2010, 527(21–22), p 5353–5359. https://doi.org/10.1016/j.msea.2010.05.040

    Article  CAS  Google Scholar 

  22. P. Kumar, A.K. Mondal, S.G. Chowdhury, G. Krishna, and A.K. Ray, Influence of Additions of Sb and/or Sr on Microstructure and Tensile Creep Behaviour of Squeeze-Cast AZ91D Mg Alloy, Mater. Sci. Eng. A, 2017, 683, p 37–45. https://doi.org/10.1016/j.msea.2016.12.006

    Article  CAS  Google Scholar 

  23. G. Nayyeri and R. Mahmudi, Effects of Sb Additions on the Microstructure and Impression Creep Behavior of a Cast Mg‐5Sn Alloy, Mater. Sci. Eng. A, 2010, 527(3), p 669–678. https://doi.org/10.1016/j.msea.2009.08.056

    Article  CAS  Google Scholar 

  24. T.B. Massalski, La–Sb (Lanthanum–Antimony), Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski Ed., ASM International, Materials Park, OH, 1990

    Google Scholar 

  25. R. Vogel and H. Klose, Über die Zustandsbilder Cer-Lanthan, Lanthan-Antimon und Cer-Indium, Z. Metallkd., 1954, 45, p 633–638.

    CAS  Google Scholar 

  26. M.N. Abdusalyamova, Phase Diagrams and Thermodynamic Properties of Rare Earth-Antimony Systems, J. Alloys Compd., 1993, 202(1–2), p L15–L20. https://doi.org/10.1016/0925-8388(93)90504-G

    Article  Google Scholar 

  27. A.A. Nayeb-Hashemi and J.B. Clark, The Mg‐Sb (Magnesium-Antimony) System, Bull. Alloys Phase Diagrams, 1984, 5(6), p 579–584. https://doi.org/10.1007/s11669-010-9784-7

    Article  CAS  Google Scholar 

  28. S. Virtanen, Biodegradable Mg and Mg alloys: corrosion and Biocompatibility, Mater. Sci. Eng. B, 2011, 176(20), p 1600–1608. https://doi.org/10.1016/j.mseb.2011.05.028

    Article  CAS  Google Scholar 

  29. R. Uzwalkiran, S. Bontha, M.R. Ramesh, V.K. Balla, A. Srinivasan, and S.V. Kailas, Tailoring Surface Characteristics of Bioabsorbable Mg-Zn-Dy Alloy Using Friction stir Processing for Improved Wettability and Degradation Behavior, J. Market. Res.Technol., 2021 https://doi.org/10.1016/j.jmrt.2021.03.057

    Article  Google Scholar 

  30. A. Yamamoto and S. Hiromoto, Effect of Inorganic Salts, Amino Acids and Proteins on the Degradation of Pure Magnesium in Vitro, Mater. Sci. Eng. C, 2009, 29(5), p 1559–1568. https://doi.org/10.1016/j.msec.2008.12.015

    Article  CAS  Google Scholar 

  31. A. Bahmani, S. Arthanari, and K.S. Shin, Formulation of Corrosion Rate of Magnesium Alloys Using Microstructural Parameters, J. Magnes. Alloys, 2020, 8(1), p 134–149. https://doi.org/10.1016/j.jma.2019.12.001

    Article  CAS  Google Scholar 

  32. G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium, Corros. Sci., 2012, 58, p 145–151. https://doi.org/10.1016/j.corsci.2012.01.021

    Article  CAS  Google Scholar 

  33. E.V. Parfenov, O.B. Kulyasova, V.R. Mukaeva, B. Mingo, R.G. Farrakhov, Y.V. Cherneikina, A. Yerokhin, Y.F. Zheng, and R.Z. Valiev, Influence of Ultra-Fine Grain Structure on Corrosion Behaviour of Biodegradable Mg-1Ca Alloy, Corros. Sci., 2020, 163, 108303. https://doi.org/10.1016/j.corsci.2019.108303

    Article  CAS  Google Scholar 

  34. S. Özarslan, H. Şevik, and İ Sorar, Microstructure Mechanical and Corrosion Properties of Novel Mg-Sn-Ce Alloys Produced by High Pressure Die Casting, Mater. Sci. Eng. C, 2019, 105, p 110064. https://doi.org/10.1016/j.msec.2019.110064

    Article  CAS  Google Scholar 

  35. A.D. Südholz, N. Birbilis, C.J. Bettles, and M.A. Gibson, Corrosion Behaviour of Mg-Alloy AZ91E With Atypical Alloying Additions, J. Alloys Compd., 2009, 471(1–2), p 109–115. https://doi.org/10.1016/j.jallcom.2008.03.128

    Article  CAS  Google Scholar 

  36. R. Jia, S. Yu, D. Li, T. Zhang, F. Wang, and C. Zhong, Study on the Effect of Mischmetal (La, Ce) on the Micro-Galvanic Corrosion of AZ91 Alloy Using Multiscale Methods, J. Alloys Compd., 2019, 778, p 427–438. https://doi.org/10.1016/j.jallcom.2018.11.030

    Article  CAS  Google Scholar 

  37. A. Prasad, J. Jain, and N.N. Gosvami, Effect of Minor La Addition on Wear Behavior of Mg-10Dy Alloy, Wear, 2021, 486, 204121. https://doi.org/10.1016/j.wear.2021.204121

    Article  CAS  Google Scholar 

  38. M.S. Chen, W.Q. Yuan, H.B. Li, and Z.H. Zou, New Insights on the Relationship Between Flow Stress Softening and Dynamic Recrystallization Behavior of Magnesium Alloy AZ31B, Mater. Charact., 2019, 147, p 173–183. https://doi.org/10.1016/j.matchar.2018.10.031

    Article  CAS  Google Scholar 

  39. J. Dai, X. Zhang, Q. Yin, S. Ni, Z. Ba, and Z. Wang, Friction and Wear Behaviors of Biodegradable Mg-6Gd-0.5 Zn-0.4 Zr Alloy Under Simulated Body Fluid Condition, J. Magnes. Alloys, 2017, 5(4), p 448–453. https://doi.org/10.1016/j.jma.2017.11.002

    Article  CAS  Google Scholar 

  40. A.J. López, P. Rodrigo, B. Torres, and J. Rams, Dry Sliding Wear Behaviour of ZE41A Magnesium Alloy, Wear, 2011, 271(11–12), p 2836–2844. https://doi.org/10.1016/j.wear.2011.05.043

    Article  CAS  Google Scholar 

  41. J. Zhang, X. Zhang, Q. Liu, S. Yang, and Z. Wang, Effects of Load on Dry Sliding Wear Behavior of Mg‐Gd‐Zn‐Zr Alloys, J. Mater. Sci. Technol., 2017, 33(7), p 645–651. https://doi.org/10.1016/j.jmst.2016.11.014

    Article  CAS  Google Scholar 

  42. X. Zhang, J. Dai, J. Zhang, and Y. Bai, Quantitative Evaluation of the Interaction Between Wear and Corrosion on Mg-3Gd-1Zn Alloy in Simulated Body Fluid, J. Mater. Eng. Perform., 2019, 28(1), p 355–362. https://doi.org/10.1007/s11665-018-3770-3

    Article  CAS  Google Scholar 

  43. H. Chen and A.T. Alpas, Sliding Wear Map for the Magnesium Alloy Mg-9Al-0.9 Zn (AZ91), Wear, 2000, 246(1–2), p 106–116. https://doi.org/10.1016/S0043-1648(00)00495-6

    Article  CAS  Google Scholar 

  44. C. Zheng, X. Wu, X. Zheng, H. Jin, and Y. Liu, Mechanical Properties and Wear Behavior of a Dissolvable Magnesium Alloy Used for Multistage Fracturing, Wear, 2021, 466, p 203559. https://doi.org/10.1016/j.wear.2020.203559

    Article  CAS  Google Scholar 

  45. S. Banerjee, S. Poria, G. Sutradhar, and P. Sahoo, Dry Sliding Tribological Behavior of AZ31-WC Nano-Composites, J. Magnes. Alloys, 2019, 7(2), p 315–327. https://doi.org/10.1016/j.jma.2018.11.005

    Article  CAS  Google Scholar 

  46. T. Thirugnanasambandham, J. Chandradass, and T.T.M. Kannan, Influence of load and Sliding Speed on Wear Behavior of AZ91E Magnesium Alloy Nanocomposite by Dry Sliding, Mater. Today Proceedings, 2021, 45, p 6553–6557. https://doi.org/10.1016/j.matpr.2020.11.459

    Article  CAS  Google Scholar 

  47. B.M. Girish, B.M. Satish, S. Sarapure, D.R. Somashekar, and Basawaraj, Wear Behavior of Magnesium Alloy AZ91 Hybrid Composite Materials, Tribol. Trans., 2015, 58(3), p 481–489. https://doi.org/10.1080/10402004.2014.987858

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Özarslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özarslan, S. Investigation of Microstructural, Mechanical, Wear, and Corrosion Properties of Mg-Sb-La Alloys. J. of Materi Eng and Perform 31, 10063–10070 (2022). https://doi.org/10.1007/s11665-022-07037-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07037-3

Keywords

Navigation