Skip to main content
Log in

Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca-xSn Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca-xSn (x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.A. Luo, Magnesium Casting Technology for Structural Applications, J. Magnes. Alloys, 2013, 1, p 2–22

    Article  Google Scholar 

  2. K. Strobel, M.A. Easton, V. Tyagi, M. Murray, M.A. Gibson, G. Savage, and T.B. Abbott, Evaluation of Castability of High Pressure Die Cast Magnesium Based Alloys, Int. J. Cast Met. Res., 2010, 23, p 81–91

    Article  Google Scholar 

  3. M. Liu, P.J. Uggowitzer, A.V. Nagasekhar, P. Schmutz, M. Easton, G.L. Song, and A. Atrens, Calculated Phase Diagrams and the Corrosion of Die-cast Mg-Al Alloys, Corros. Sci., 2009, 51, p 602–619

    Article  Google Scholar 

  4. C.H. Cáceres, J.R. Griffiths, C.J. Davidson, and C.L. Newton, Effects of Solidification Rate and Ageing on the Microstructure and Mechanical Properties of AZ91 Alloy, Mater. Sci. Eng. A, 2002, 325, p 344–355

    Article  Google Scholar 

  5. A.A. Luo, Recent Magnesium Alloy Development for Elevated Temperature Applications, Int. Mater. Rev., 2004, 49, p 13–30

    Article  Google Scholar 

  6. B. Kondori and R. Mahmudi, Impression Creep Characteristics of A Cast Mg Alloy, Metall. Mater. Trans. A, 2009, 40, p 2007–2015

    Article  Google Scholar 

  7. Y.C. Zhang, L. Yang, J. Dai, G.L. Guo, and Z. Liu, Effect of Ca and Sr on Microstructure and Compressive Creep Property of Mg-4Al-RE Alloys, Mater. Sci. Eng. A, 2014, 610, p 309–314

    Article  Google Scholar 

  8. B.H. Kim, S.W. Lee, Y.H. Park, and I.M. Park, The Microstructure, Tensile Properties, and Creep Behavior of AZ91, AS52 and TAS652 Alloy, J. Alloys Compd., 2010, 493, p 502–506

    Article  Google Scholar 

  9. B. Kondori and R. Mahmudi, Effect of Ca Additions on the Microstructure, Thermal Stability and Mechanical Properties of a Cast AM60 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527, p 2014–2021

    Article  Google Scholar 

  10. J. Bai, Y.S. Sun, S. Xun, F. Xue, and T.B. Zhu, Microstructure and Tensile Creep Behavior of Mg-4Al Based Magnesium Alloys with Alkaline-Earth Elements Sr and Ca Additions, Mater. Sci. Eng. A, 2006, 419, p 181–188

    Article  Google Scholar 

  11. K. Hirai, H. Somekawa, Y. Takigawa, and K. Higashi, Effects of Ca and Sr Addition on Mechanical Properties of a Cast AZ91 Magnesium Alloy at Room and Elevated Temperature, Mater. Sci. Eng. A, 2005, 403, p 276–280

    Article  Google Scholar 

  12. F. Wang, J.B. Li, J. Liu, D. Lv, P.L. Mao, and Z. Liu, Influences of Ca and Y Addition on the Microstructure and Corrosion Resistance of Vacuum Die-cast AZ91 Alloy, Acta Metall. Sin. (Engl. Lett.), 2014, 27, p 609–614

    Article  Google Scholar 

  13. H. Watanabe, M. Yamaguchi, Y. Takigawa, and K. Higashi, Mechanical Properties of Mg-Al-Ca Alloy Processed by Hot Extrusion, Mater. Sci. Eng. A, 2007, 454–455, p 384–388

    Article  Google Scholar 

  14. B. Tang, S.S. Li, X.S. Wang, D.B. Zeng, and R. Wu, Effect of Ca/Sr Composite Addition into AZ91D Alloy on Hot-crack Mechanism, Scr. Mater., 2005, 53, p 1077–1082

    Article  Google Scholar 

  15. Y. Turen, Effect of Sn Addition on Microstructure, Mechanical and Casting Properties of AZ91 Alloy, Mater. Des., 2013, 49, p 1009–1015

    Article  Google Scholar 

  16. B. Kim, J. Do, S. Lee, and I. Park, In Situ Fracture Observation and Fracture Toughness Analysis of Squeeze Cast AZ51-xSn Magnesium Alloys, Mater. Sci. Eng. A, 2010, 527, p 6745–6757

    Article  Google Scholar 

  17. R. Mahmudi and S. Moeendarbari, Effects of Sn Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 566, p 30–39

    Article  Google Scholar 

  18. J.H. Chen, Z.H. Chen, H.G. Yan, F.Q. Zhang, and K. Liao, Effects of Sn Addition on Microstructure and Mechanical Properties of Mg-Zn-Al Alloys, J. Alloys Compd., 2008, 461, p 209–215

    Article  Google Scholar 

  19. M.B. Yang and F.S. Pan, Effects of Sn Addition on As-cast Microstructure, Mechanical Properties and Casting Fluidity of ZA84 Magnesium Alloy, Mater. Des., 2010, 31, p 68–75

    Article  Google Scholar 

  20. K.C. Park, B.H. Kim, H. Kimura, Y.H. Park, and I.M. Park, Microstructure and Corrosion Properties of Mg-xSn-5Al-1Zn (x = 0, 1, 5 and 9 mass%) Alloys, Mater. Trans., 2010, 51, p 472–476

    Article  Google Scholar 

  21. B.H. Kim, S.M. Jo, Y.C. Lee, Y.H. Park, and I.M. Park, Microstructure, Tensile Properties and Creep Behavior of Mg-4Al-2Sn Containing Ca Alloy Produced by Different Casting Technologies, Mater. Sci. Eng. A, 2012, 535, p 40–47

    Article  Google Scholar 

  22. Q. Xiang, R.Z. Wu, and M.L. Zhang, Influence of Sn on Microstructure and Mechanical Properties of Mg-5Li-3Al-2Zn Alloys, J. Alloys Compd., 2009, 477, p 832–835

    Article  Google Scholar 

  23. A. Suzuki, N.D. Saddock, J.W. Jones, and T.M. Pollock, Structure and Transition of Eutectic (Mg,Al)2Ca Laves Phase in a Die-cast Mg-Al-Ca Base Alloy, Scr. Mater., 2004, 51, p 1005–1010

    Article  Google Scholar 

  24. F. Wang, Y. Wang, P.L. Mao, B.Y. Yu, and Q.Y. Guo, Effects of Combined Addition of Y and Ca on Microstructure and Mechanical Properties of Die Casting AZ91 Alloy, Trans. Nonferrous Met. Soc. China, 2010, 20, p 311–317

    Article  Google Scholar 

  25. J. Song, S.M. Xiong, M. Li, and J. Allison, The Correlation between Microstructure and Mechanical Properties of High-pressure Die-cast AM50 Alloy, J. Alloys Compd., 2009, 477, p 863–869

    Article  Google Scholar 

  26. Z.M. Shi, M. Liu, and A. Atrens, Measurement of the Corrosion Rate of Magnesium Alloys using Tafel Extrapolation, Corros. Sci., 2010, 52, p 579–588

    Article  Google Scholar 

  27. H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, and S. Farahany, Relationship Between the Corrosion Behavior and the Thermal Characteristics and Microstructure of Mg-0.5Ca-xZn Alloys, Corros. Sci., 2012, 64, p 184–197

    Article  Google Scholar 

  28. G. Song and A. Atrens, Understanding Magnesium Corrosion—a Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858

    Article  Google Scholar 

  29. S.M. Liang, R.S. Chen, J.J. Blandin, M. Suery, and E.H. Han, Thermal Analysis and Solidification Pathways of Mg-Al-Ca System Alloys, Mater. Sci. Eng. A, 2008, 480, p 365–372

    Article  Google Scholar 

  30. A. Suzuki, N.D. Saddock, J.W. Jones, and T.M. Pollock, Solidification Paths and Eutectic Intermetallic Phases in Mg-Al-Ca Ternary Alloys, Acta Mater., 2005, 53, p 2823–2834

    Article  Google Scholar 

  31. C. Zhang, H.B. Cao, V. Firouzdor, S. Kou, and Y.A. Chang, Microstructure Investigations of Directionally Solidified Mg-rich Alloys Containing Al, Ca and Sn, Intermetallics, 2010, 18, p 1597–1602

    Article  Google Scholar 

  32. F. Wang, S.J. Sun, B. Yu, F. Zhang, P.L. Mao, and Z. Liu, First Principles Investigation of Binary Intermetallics in Mg-Al-Ca-Sn Alloy: Stability, Electronic Structures, Elastic Properties and Thermodynamic Properties, Trans. Nonferrous Met. Soc. China, 2016, 26, p 203–212

    Article  Google Scholar 

  33. J.R. Terbush, O.H. Chen, J.W. Jones, and T.M. Pollock, The Dependence of Creep Behavior on Elemental Partitioning in Mg-5Al-3Ca-xSn Alloys, Metall. Mater. Trans. A, 2012, 43, p 3120–3134

    Article  Google Scholar 

  34. W.D. Callister and D.G. Rethwisch, Jr., Materials Science and Engineering: An Introduction, 8th ed., Wiley, Hoboken, 2009

    Google Scholar 

  35. Y.Z. Lü, Q.D. Wang, X.Q. Zeng, W.J. Ding, C.Q. Zhai, and Y.P. Zhu, Effects of Rare Earths on the Microstructure, Properties and Fracture Behavior of Mg-Al alloys, Mater. Sci. Eng. A, 2000, 278, p 66–76

    Article  Google Scholar 

  36. Y.Z. Lü, Q.D. Wang, W.J. Ding, X.Q. Zeng, and Y.P. Zhu, Fracture Behavior of AZ91 Magnesium Alloy, Mater. Lett., 2000, 44, p 265–268

    Article  Google Scholar 

  37. D.H. Stjohn, M.A. Easton, M. Qian, and J.A. Taylor, Grain Refinement of Magnesium Alloys: A Review of Recent Research, Theoretical Developments, and Their Application, Metall. Mater. Trans. A, 2013, 44, p 2935–2949

    Article  Google Scholar 

  38. A.A. Luo, B.R. Powell, and A.K. Sachdev, Computational Phase Equilibria and Experimental Investigation of Magnesium-Aluminum-Calcium Alloys, Intermetallics, 2012, 24, p 22–29

    Article  Google Scholar 

  39. B.H. Kim, K.C. Park, Y.H. Park, and I.M. Park, Microstructure and Creep Properties of Mg-4Al-2Sn-1(Ca, Sr) Alloys, Trans. Nonferrous Met. Soc. China, 2010, 20, p 1184–1191

    Article  Google Scholar 

  40. B.H. Kim, K.C. Park, Y.H. Park, and I.M. Park, Investigations of the Properties of Mg-4Al-2Sn-1Ca-xCe Alloys, Mater. Sci. Eng. A, 2010, 527, p 6372–6377

    Article  Google Scholar 

  41. Q. Liu, W.L. Cheng, H. Zhang, C.X. Xu, and J.S. Zhang, The Role of Ca on the Microstructure and Corrosion Behavior of Mg-8Sn-1Al-1Zn-Ca Alloys, J. Alloys Compd., 2014, 590, p 162–167

    Article  Google Scholar 

  42. K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the Relationship between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63, p 1201–1204

    Article  Google Scholar 

  43. S. Amira, D. Dubé, R. Tremblay, and E. Ghali, Influence of the Microstructure on the Corrosion Behavior of AXJ530 Magnesium Alloy in 3.5% NaCl Solution, Mater. Charact., 2008, 59, p 1508–1517

    Article  Google Scholar 

  44. J.Y. Choi and W.J. Kim, Significant Effects of Adding Trace Amounts of Ti on the Microstructure and Corrosion Properties of Mg-6Al-1Zn Magnesium Alloy, J. Alloys Compd., 2014, 614, p 49–55

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially Supported by National Natural Science Foundation of China (Nos. 51504153 and 51571145), Natural Science Foundation of Liaoning Province (No. 201602548) and Science and Technology Project of Shenyang (No. 17-11-8-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Dong, H., Sun, S. et al. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca-xSn Alloys. J. of Materi Eng and Perform 27, 612–623 (2018). https://doi.org/10.1007/s11665-018-3145-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3145-9

Keywords

Navigation