Skip to main content
Log in

Investigation of Intermetallic Phase Fractions and Dry-corrosive Wear Properties in Mg–Al–Si Ternary Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This study produced a non-standard alloy of 85% Mg, 13.5% Al, and 1.5% Si by weight. In-depth microstructural, chemical, and morphological analyses of the secondary β phases formed in the MgAlSi alloy were conducted. The formation processes of the intermetallic phases were also examined. Image processing was applied to the obtained microstructures using the Image-J program. The average alloy had a matrix α phase to secondary β phase ratio of approximately 60/40. Furthermore, a dry and corrosive wear test were applied to the MgAlSi alloy by means of reciprocating motion. The wear rate was calculated to be at least 0.00137 mm3/Nm, indicating that the unique MgAlSi ternary alloy produced had very high wear resistance due to the presence of intermetallic phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Xu, C.X., H. Ju, and Y. Zhou. Effect of Ca on Microstructure and Properties of Mg-Al-Si Alloys. in Advanced Materials Research. 2011. Trans Tech Publ.

  2. J. Bian et al., Research on the effect of Sr and Zr on microstructure and properties of Mg–4Zn alloy. Int. J. Metalcast. 15(4), 1483–1498 (2021). https://doi.org/10.1007/s40962-021-00576-w

    Article  CAS  Google Scholar 

  3. P. MÖ, Magnesium alloying, some potentials for alloy development. J. Jpn. Inst. Light Metals 42(12), 679–686 (1992)

    Article  Google Scholar 

  4. F. Froes, D. Eliezer, E. Aghion, The science, technology, and applications of magnesium. J. Min. Metals Mater. Soc. (TMS) 50(9), 30–34s (1998)

    Article  CAS  Google Scholar 

  5. Furuya, H., et al. Applications of magnesium alloys for aerospace structure systems. in Materials Science Forum. 2000. Trans Tech Publ.

  6. M. Bamberger, G. Dehm, Trends in the development of new Mg alloys. Annu. Rev. Mater. Res. 38, 505–533 (2008)

    Article  CAS  Google Scholar 

  7. X.-N. Gu, Y.-F. Zheng, A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. 4(2), 111–115 (2010)

    Article  Google Scholar 

  8. F. Witte, The history of biodegradable magnesium implants: a review. Acta Biomater. 6(5), 1680–1692 (2010)

    Article  CAS  Google Scholar 

  9. B. Mordike, T. Ebert, Magnesium: properties-applications-potential. Mater. Sci. Eng. A 302(1), 37–45 (2001)

    Article  Google Scholar 

  10. M. Paradis, A.M. Samuel, H.W. Doty et al., Inclusion measurement and identification in Mg-based alloys: application of the Brightimeter technique. Int. J. Metalcast. 12(1), 2–19 (2018). https://doi.org/10.1007/s40962-016-0130-7

    Article  Google Scholar 

  11. Z. Zhang, Development of magnesium-based alloys for elevated temperature applications (Genie Universities, Quebec, 2000)

    Google Scholar 

  12. H. Friedrich, S. Schumann, Research for a “new age of magnesium” in the automotive industry. J. Mater. Process. Technol. 117(3), 276 (2001)

    Article  CAS  Google Scholar 

  13. H. Zengin, Role of Sr in microstructure, hardness and biodegradable behavior of cast Mg–2Zn–2Ca–0.5 Mn (ZXM220) alloy for potential implant application. Int. J. Metalcast. 14(2), 442–453 (2020). https://doi.org/10.1007/s40962-019-00366-5

    Article  CAS  Google Scholar 

  14. Y. Lee, A. Dahle, D. St John, The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A 31A(11), 2895–2906 (2000)

    Article  CAS  Google Scholar 

  15. M.E. Moussa, S. El-Hadad, A. Nofal, Influence of Si addition on the microstructure, hardness and elevated-temperature sliding wear behavior of AX53 magnesium alloy. Int. J. Metalcast. 16(1), 385–398 (2022). https://doi.org/10.1007/s40962-021-00611-w

    Article  CAS  Google Scholar 

  16. M. Bamberger, Structural refinement of cast magnesium alloys. Mater. Sci. Technol. 17(1), 15–24 (2013)

    Article  Google Scholar 

  17. P. Wan, L. Tan, K. Yang, Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability: a review. J. Mater. Sci. Technol. 32(9), 827–834 (2016)

    Article  CAS  Google Scholar 

  18. Westengen, H. and H. Rashed (2016) Magnesium Alloys: Alloy and Temper Designation System. Magnesium Alloys: Properties and Applications. Elsevier. 1-4.

  19. Z. Ma, C. Li, J. Du et al., Grain refinement of Mg–Al alloys inoculated by MgO powder. Int. J. Metalcast. 13(3), 674–685 (2019). https://doi.org/10.1007/s40962-018-0287-3

    Article  CAS  Google Scholar 

  20. S. Saha, C. Ravindran, Grain refinement of AZ91E and Mg-9 WT% Al binary alloys using zinc oxide. Int. J. Metalcast. 9(1), 33–42 (2015). https://doi.org/10.1007/BF03355600

    Article  Google Scholar 

  21. M.B. Kannan, E. Koc, M. Unal, Biodegradability of β-Mg17Al12 phase in simulated body fluid. Mater. Lett. 82, 54–56 (2012)

    Article  CAS  Google Scholar 

  22. R.R. Kulkarni et al., Phase dissolution of γ-Mg17Al12 during homogenization of as-cast AZ80 Magnesium alloy and its effect on room temperature mechanical properties, in Magnesium Technology 2012. (Springer, Berlin, 2012), pp.543–548

    Google Scholar 

  23. K. Korgiopoulos, B. Langelier, M. Pekguleryuz, Mg17Al12 phase refinement and the improved mechanical performance of Mg-6Al alloy with trace erbium addition. Mater. Sci. Eng. A 812, 141075 (2021)

    Article  CAS  Google Scholar 

  24. L. Zhu et al., Multiscale design of α-Al, eutectic silicon and Mg2Si phases in Al–Si–Mg alloy manipulated by in situ nanosized crystals. Mater. Sci. Eng. A 802, 140627 (2021)

    Article  CAS  Google Scholar 

  25. M. Khorasanian et al., Effect of addition of silver and chilled casting on corrosion behavior of AZ91 magnesium alloy. Int. J. Metalcast. 15(4), 1184–1196 (2021). https://doi.org/10.1007/s40962-020-00558-4

    Article  CAS  Google Scholar 

  26. Y. Sun, H. Ahlatci, Mechanical and wear behaviors of Al–12Si–XMg composites reinforced with in situ Mg2Si particles. Mater. Des. 32(5), 2983–2987 (2011)

    Article  CAS  Google Scholar 

  27. B. Çiçek, Y. Sun, A study on the mechanical and corrosion properties of lead added magnesium alloys. Mater. Design 37, 369–372 (2012)

    Article  Google Scholar 

  28. B. Çiçek, H. Ahlatçı, Y. Sun, Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg2Si particles. Mater. Des. 50, 929–935 (2013)

    Article  Google Scholar 

  29. Cui, P., et al., Effect of La/Nd ratio on the microstructure and corrosion behaviors of squeeze-cast Mg–Al–Zn–La–Nd alloys. Int. J. Metalcast. 1-15 (2022). https://doi.org/10.1007/s40962-022-00767-z

  30. Y. Carbonneau et al., On the observation of a new ternary MgSiCa phase in Mg-Si alloys. Metall Mater Trans. 29(6), 1759 (1998)

    Article  Google Scholar 

  31. S. Candan, E.J.T.O.N.M.S.O.C. Candan, A comparative study on corrosion of Mg–Al–Si alloys. Trans. Nonferrous Metals Soc. Chin. 27(8), 1725–1734 (2017)

    Article  CAS  Google Scholar 

  32. J. Senf et al., Corrosion and galvanic corrosion of die casted magnesium alloys. Magnes. Technol. 2000, 136–142 (2000)

    Google Scholar 

  33. F.J.P.D.I. Zanotto, Corrosion behaviour of the AZ31 magnesium alloy and surface treatments for its corrosion protection. Pubblicazioni dello IUSS. 3(1), 1–159 (2009)

    Google Scholar 

  34. E. El Sawy et al., Corrosion of Mg, AS31 and AZ91 alloys in nitrate solutions. J. Alloy. Compd. 492(1–2), 69–76 (2010)

    Article  Google Scholar 

  35. A. Atrens et al., Review of Mg alloy corrosion rates. J. Magnes. Alloy. 8(4), 989–998 (2020)

    Article  CAS  Google Scholar 

  36. J. Miao et al., Interphase boundary segregation of silver and enhanced precipitation of Mg17Al12 Phase in a Mg–Al–Sn–Ag alloy. Scr. Mater. 154, 192–196 (2018)

    Article  CAS  Google Scholar 

  37. E. Savitsky, V. Baton, Mechanical properties of alloys of the magnesium—cadmium system. Russ. Chem. Bull. 1(3), 383–387 (1952)

    Article  Google Scholar 

  38. R. Ferrier, D. Herrell, Conduction in amorphous magnesium-bismuth alloys. Phil. Mag. 19(160), 853–868 (1969)

    Article  CAS  Google Scholar 

  39. N. Chakraborti, H. Lukas, Thermodynamic optimization of the Mg-Al-Si phase diagram. Calphad 16(1), 79–86 (1992)

    Article  CAS  Google Scholar 

  40. Q. Li et al., Experimental study and phase diagram calculation in Al–Zn–Mg–Si quaternary system. J. Alloy. Compd. 501(2), 282–290 (2010)

    Article  CAS  Google Scholar 

  41. B. Cicek, T. Aydogmus, Y. Sun, A basic study on artificial aging in Mg–10Al12Si+1Pb alloy. Mater. Res. Express 7(1), 016588 (2020)

    Article  CAS  Google Scholar 

  42. Kainer, K, F. V. Buch, The current state of technology and potential for further development of magnesium applications. J. Magnes. Alloy: 1–22 (2003)

  43. Barber L.P., Characterization of the solidification behavior and resultant microstructures of magnesium-aluminum alloys in Materials Science & Engineering, Worcester Polytechnic Institute, 2004

  44. I. Polmear, Recent developments in light alloys. Mater. Trans. 37(1), 12–31 (1996)

    Article  CAS  Google Scholar 

  45. L.-N. Zhang et al., The effect of selected alloying element additions on properties of Mg-based alloy as bioimplants: a literature review. Front. Mater. Sci. 7(3), 227–236 (2013)

    Article  Google Scholar 

  46. M. Wolff et al., Metal injection molding (MIM) of magnesium and its alloys. Metals 6(5), 118 (2016)

    Article  Google Scholar 

  47. K.A. Kumar et al., Dry sliding wear behaviour of Mg–Si alloys. Wear 303(1–2), 56–64 (2013)

    Article  Google Scholar 

  48. J. An et al., Dry sliding wear behavior of magnesium alloys. Wear 265(1–2), 97–104 (2008)

    Article  CAS  Google Scholar 

  49. Y. Zhang et al., Friction and wear behavior of as-cast Mg–Zn–Y quasicrystal materials. Mater. Sci. Eng. A 472(1–2), 59–65 (2008)

    Article  Google Scholar 

  50. A.W.J.M.S. El-Morsy, E. A, Dry sliding wear behavior of hot deformed magnesium AZ61 alloy as influenced by the sliding conditions. Mater. Sci. Eng. A 473(1–2), 330–335 (2008)

    Article  Google Scholar 

  51. T. Chen et al., Wear behavior of thixoformed AZ91D magnesium alloy: a comparison with permanent mould cast alloy. Mater. Sci. Eng. A 445, 477–485 (2007)

    Article  Google Scholar 

  52. Vander Voort G., Metallography of Magnesium and its Alloys. Buehler Tech-Notes, Vol. 4(2) 2015

  53. X. Ma et al. In-situ synthesis of a1n/mg matrix composites, 2011

  54. P.P. Seth, O. Parkash, D.J.R.a. Kumar, Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys–a review. RSC adv. 10(61), 37327–37345 (2020)

    Article  CAS  Google Scholar 

  55. Y. Zhang et al, Microstructural evolution and mechanical properties of as-cast Mg-12Zn alloys with different Al additions. Mat. Res. 23(1), (2020)

  56. Q. Wang, C. Davidson, Solidification and precipitation behaviour of Al–Si–Mg casting alloys. J. Mater. Sci. 36(3), 739–750 (2001)

    Article  CAS  Google Scholar 

  57. Y. Zhao et al., Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process. J. Mater. Sci. Technol. 35(6), 1044–1052 (2019)

    Article  Google Scholar 

  58. S. Chowdhury et al., Microstructure and mechanical properties of fiber laser welded and diode laser welded AZ31 magnesium alloy. Metall. Mater. Trans. A 42, 1974–1989 (2011)

    Article  CAS  Google Scholar 

  59. M. Esmaily et al., Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 89, 92–193 (2017)

    Article  CAS  Google Scholar 

  60. K. Kadali et al., Dissolution kinetics of Mg17Al12 eutectic phase and its effect on corrosion behavior of as-cast AZ80 magnesium alloy. Jom 71(7), 2209–2218 (2019)

    Article  CAS  Google Scholar 

  61. J. Choi, W. Kim, Significant effects of adding trace amounts of Ti on the microstructure and corrosion properties of Mg–6Al–1Zn magnesium alloy. J. Alloy. Compd. 614, 49–55 (2014)

    Article  CAS  Google Scholar 

  62. P. Zhang, S. Li, Z. Zhang, General relationship between strength and hardness. Mater. Sci. Eng. A 529, 62–73 (2011)

    Article  CAS  Google Scholar 

  63. H. Bu et al., Cold spray blended Al+ Mg17Al12 coating for corrosion protection of AZ91D magnesium alloy. Surf. Coat. Technol. 207, 155–162 (2012)

    Article  CAS  Google Scholar 

  64. H. Mathur, V. Maier-Kiener, S. Korte-Kerzel, Deformation in the γ-Mg17Al12 phase at 25–278 C. Acta Mater. 113, 221–229 (2016)

    Article  CAS  Google Scholar 

  65. K. Hagihara, K. Hayakawa, K. Miyoshi, Inducement of kink-band formation in directionally solidified Mg/Mg17Al12 eutectic alloy-Inspired by the deformation behavior of the long-period stacking ordered (LPSO) phase. Mater. Sci. Eng. A 798, 140087 (2020)

    Article  CAS  Google Scholar 

  66. N. Bochvar et al., Kinetics of phase precipitation in Al–Mg–Si alloys subjected to equal-channel angular pressing during subsequent heating. J. Alloy. Compd. 881, 160583 (2021)

    Article  CAS  Google Scholar 

  67. J. Li et al., Electrochemical behavior of Mg–Al-Zn–In alloy as anode materials in 3.5 wt% NaCl solution. Electrochim Acta 238, 156–167 (2017)

    Article  CAS  Google Scholar 

  68. A. Zafari, H. Ghasemi, R. Mahmudi, Tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear 292, 33–40 (2012)

    Article  Google Scholar 

  69. R. Trezona, D. Allsopp, I.J.W. Hutchings, Transitions between two body and three body abrasive wear influence of test conditions in the microscale abrasive wear test. Wear 225, 205–214 (1999)

    Article  Google Scholar 

  70. Y. Zhang, X. Yin, F.J.C.S. Yan, Effect of halide concentration on tribocorrosion behaviour of 304SS in artificial seawater. Corros. Sci. 99, 272–280 (2015)

    Article  CAS  Google Scholar 

  71. S. Jhamb et al., A comprehensive analysis on magnesium-based alloys and metal matrix composites for their in-vitro biocompatibility (Taylor & Francis, Oxfordshire, 2022), pp.1–34

    Google Scholar 

  72. T. Rajmohan, S. Vijayabhaskar, D. Vijayan, Multiple performance optimization in wear characteristics of Mg-SiC nanocomposites using grey-fuzzy algorithm. SILICON 12(5), 1177–1186 (2020)

    Article  CAS  Google Scholar 

  73. A.S. Vanli, B.O. Küçükyıldırım, A. Akdoğan, Wear behavior of SiC reinforced AZ91 magnesium matrix composites fabricated by high pressure die casting, in 19th International Metallurgy & Materials Congress (IMMC2018), Istanbul 2018

  74. M. Dargusch et al., The effect of silicon content on the microstructure and creep behavior in die-cast magnesium AS alloys. Metall Mater Trans A 35, 1905–1909 (2004)

    Article  Google Scholar 

  75. D.K. Dwivedi, R. Sharma, A.J.I.J.O.C.M.R. Kumar, Influence of silicon content and heat treatment parameters on mechanical properties of cast AlSiMg alloys. Int. J. Cast Metals Res. 19(5), 275–282 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank the Scientific Research Projects Department of karabuk University for this project (Project no: KBÜBAP-22-DS-028). Also we would like to thank the laboratory staff of the Hitit University Physics Department for expanding this study. We would also like to present my respects to Karabük University Materials-Research-Development-Center (MARGEM) management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Najah Saud.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicek, B., Elen, L., Koc, E. et al. Investigation of Intermetallic Phase Fractions and Dry-corrosive Wear Properties in Mg–Al–Si Ternary Alloy. Inter Metalcast 18, 331–342 (2024). https://doi.org/10.1007/s40962-023-00992-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-00992-0

Keywords

Navigation