Skip to main content
Log in

Reciprocating Wear of Ti-TiB In Situ Composites Synthesized via Vacuum Arc Melting

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

TiB-reinforced titanium matrix composites were synthesized using vacuum arc melting to enhance the hardness and wear resistance of pure (Ti). The microstructure showed a macroscopically uniform distribution of TiB whiskers in the Ti matrix. The hardness of the composite increased from 799 (with TiB content 50 vol.%) to 895 HV (with TiB content 85 vol.%) compared to the 236 HV hardness of pure Ti. Dry sliding reciprocating wear tests under four different loads of 10, 15, 20, and 25 N were carried out against a steel ball as a counterface at a constant frequency of 4 Hz. The coefficient of friction and wear rate decreased with increasing TiB content. The observed behavior has been explained based on the hardness of the composites, the presence of loose wear particles over the worn surface, formation of a transfer layer of wear debris over the surface and its degree of compaction, extent of coverage, and presence of lubricious oxides (TiO2, B2O3 and H3BO3). The operative mechanism of wear is a mix of ploughing, adhesion and oxidation for pure Ti, whereas the same for composites is adhesion, oxidation, delamination, and abrasion. The composite having 80 vol.% TiB has shown the lowest coefficient of friction among all the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.D. Hayat, H. Singh, Z. He and P. Cao, Titanium Metal Matrix Composites: An Overview, Compos. Part A Appl. Sci. Manuf., 2019, 121, p 418–438.

    Article  CAS  Google Scholar 

  2. B.S. Li, J.L. Shang, J.J. Guo and H.Z. Fu, Formation of TiBw Reinforcement in In-Situ Titanium Matrix Composites, J. Mater. Sci., 2004, 39, p 1131–1133.

    Article  CAS  Google Scholar 

  3. M. Niu, X. Zhang and J. Yang, Tribological Behaviour of Fe3Al-Ba0.25Sr0.75SO4 Self-Lubricating Composites in Vacuum and Air, Vacuum, 2018, 154, p 315–321.

    Article  CAS  Google Scholar 

  4. X. Zhang, Y. Sun, M. Niu, M. Shao and X. Geng, Microstructure and Mechanical Behavior of In Situ TiC Reinforced Fe3Al(Fe-23Al-3Cr) Matrix Composites by Mechanical Alloying and Vacuum Hot-Pressing Sintering Technology, Vacuum, 2020 https://doi.org/10.1016/j.vacuum.2020.109544

    Article  Google Scholar 

  5. X. Zhang, M. Niu, C. Wu and J. Chen, The Effect of Titanium Addition on the Microstructure, Mechanical and Tribological Properties of Ni3Si Alloys Prepared by Powder Metallurgy Method, Materwiss. Werksttech., 2019, 50, p 1537–1544.

    Article  CAS  Google Scholar 

  6. X. Zhang, M. Zhang, M. Shao, X. Geng, Y. Sun, M. Niu, Y. Miao and X. Wang, Comparative Study on Tribological Behavior of Fe3Al Alloy Against Different Counterparts in Seawater, J. Mater. Eng. Perform., 2021, 30, p 8030–8039.

    Article  CAS  Google Scholar 

  7. V. Jindal, A. Sarda, A. Degnah and K.S. Ravi, Chandran, Effect of iron & boron content on the Spark Plasma Sintering of Ti-B-Fe alloys, Adv. Powder Technol., 2019, 30, p 423–427.

    Article  CAS  Google Scholar 

  8. K. Morsi and V.V. Patel, Processing and Properties of Titanium-Titanium Boride (TiBw) Matrix Composites: A Review, J. Mater. Sci., 2007, 42, p 2037–2047.

    Article  CAS  Google Scholar 

  9. D.A. Angel, T. Mikó, F. Kristály, M. Benke and Z. Gácsi, Development of TiB and Nanocrystalline Ti-Reinforced Novel Hybrid Ti Nanocomposite Produced by Powder Metallurgy, J. Mater. Sci., 2022, 57, p 4130–4144.

    Article  CAS  Google Scholar 

  10. S. Li, Y. Han, X. Wang, G. Huang, M. Fang, H. Shi, J. Le and W. Lu, Novel Strategy of Planting Nano-TiB Fibers with Ultra-Fine Network Distribution Into Ti-Composite Powder and its Thermal Transition Mechanism, Compos. Commun., 2022, 29, 101002.

    Article  Google Scholar 

  11. X. Yi, G. Shen, X. Meng, H. Wang, Z. Gao, W. Cai and L. Zhao, The Higher Compressive Strength (TiB+La2O3)/Ti–Ni Shape Memory Alloy Composite with the Larger Recoverable Strain, Compos. Commun., 2021, 23, 100583.

    Article  Google Scholar 

  12. D.L. Ouyang, S.W. Hu, C. Tao, X. Cui, Z.S. Zhu and S.Q. Lu, Experiment and Modeling of TiB2/TiB Boride Layer of Ti-6Al-2Zr-1Mo-1V Alloy, Trans. Nonferrous Met. Soc. China, 2021, 31, p 3752–3761.

    Article  CAS  Google Scholar 

  13. C. Zhang, F. Kong, S. Xiao, H. Niu, L. Xu and Y. Chen, Evolution of Microstructural Characteristic and Tensile Properties During Preparation of TiB/Ti Composite Sheet, Mater. Des., 2012, 36, p 505–510.

    Article  CAS  Google Scholar 

  14. M. Ozerov, N. Stepanov and S. Zherebtsov, Wear Resistance of Ti/TiB Composites Produced by Spark Plasma Sintering, AIP Conf. Proc., 2017, 1909, p 020164.

    Article  Google Scholar 

  15. M. Selvakumar, T. Ramkumar, M. Mohanraj and P. Chandramohan, Experimental Investigations of Reciprocating Wear Behavior of Metal Matrix (Ti/TiB) Composites, Arch. Civ. Mech. Eng., 2020, 20, p 1–9.

    Article  Google Scholar 

  16. Q. An, L. Huang, S. Jiang, Y. Bao, M. Ji, R. Zhang and L. Geng, Two-Scale TiB/Ti64 Composite Coating Fabricated by Two-Step Process, J. Alloy. Compd., 2018, 755, p 29–40.

    Article  CAS  Google Scholar 

  17. M. Xia, A. Liu, Z. Hou, N. Li, Z. Chen and H. Ding, Microstructure Growth Behavior and its Evolution Mechanism During Laser Additive Manufacture of in-Situ Reinforced (TiB+TiC)/Ti Composite, J. Alloy. Compd., 2017, 728, p 436–444.

    Article  CAS  Google Scholar 

  18. P.K. Farayibi, T.E. Abioye, A. Kennedy and A.T. Clare, Development of Metal Matrix Composites by Direct Energy Deposition of ‘Satellited’ Powders, J. Manuf. Process., 2019, 45, p 429–437.

    Article  Google Scholar 

  19. Y. Hu, W. Cong, X. Wang, Y. Li, F. Ning and H. Wang, Laser Deposition-Additive Manufacturing of TiB-Ti Composites with Novel Three-Dimensional Quasi-Continuous Network Microstructure: Effects on Strengthening and Toughening, Compos. Part B Eng., 2018, 133, p 91–100.

    Article  CAS  Google Scholar 

  20. S. Pouzet, P. Peyre, C. Gorny, O. Castelnau, T. Baudin, F. Brisset, C. Colin and P. Gadaud, Additive Layer Manufacturing of Titanium Matrix Composites Using the Direct Metal Deposition Laser Process, Mater. Sci. Eng. A., 2016, 677, p 171–181.

    Article  CAS  Google Scholar 

  21. R. Banerjee, A. Genç, P.C. Collins and H.L. Fraser, Comparison of Microstructural Evolution in Laser-Deposited and Arc-Melted In-Situ Ti-TiB, Composites, 2004, 35, p 2143–2152.

    Google Scholar 

  22. H.T. Tsang, C.G. Chao and C.Y. Ma, Effects of Volume Fraction of Reinforcement on Tensile and Creep Properties of In-Situ MMC, Scr. Mater., 1997, 37, p 1359–1365.

    Article  CAS  Google Scholar 

  23. W. Lu, D. Zhang, X. Zhang, R. Wu, T. Sakata and H. Mori, Microstructural Characterization of TiB in In Situ Synthesized Titanium Matrix Composites Prepared by Common Casting Technique, J. Alloy. Compd., 2001, 327, p 240–247.

    Article  CAS  Google Scholar 

  24. R. Kumar, L. Liu, M. Antonov, R. Ivanov and I. Hussainova, Hot Sliding Wear of 88 wt.% TiB-Ti Composite from SHS Produced Powders, Materials (Basel), 2021, 14, p 1242.

    Article  CAS  Google Scholar 

  25. H. Attar, S. Ehtemam-Haghighi, D. Kent, I.V. Okulov, H. Wendrock, M. Bonisch, A.S. Volegov, M. Calin, J. Eckert and M.S. Dargusch, Nanoindentation and Wear Properties of Ti and Ti-TiB Composite Materials Produced by Selective Laser Melting, Mater. Sci. Eng. A., 2017, 688, p 20–26.

    Article  CAS  Google Scholar 

  26. Y. Bao, L. Huang, Q. An, S. Jiang, L. Geng and X. Ma, Wire-Feed Deposition TiB Reinforced Ti Composite Coating: Formation Mechanism and Tribological Properties, Mater. Lett., 2018, 229, p 221–224.

    Article  CAS  Google Scholar 

  27. A.S. Patil, V.D. Hiwarkar, P.K. Verma and R.K. Khatirkar, Effect of TiB 2 Addition on the microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated through Direct Metal Laser Sintering (DMLS), J. Alloy. Compd., 2019, 777, p 165–173.

    Article  CAS  Google Scholar 

  28. R. Kumar, M. Antonov, L. Liu and I. Hussainova, Sliding Wear Performance of In-Situ Spark Plasma Sintered Ti-TiBw Composite at Temperatures up to 900 °C, Wear, 2021, 476, p 203663.

    Article  CAS  Google Scholar 

  29. I.Y. Kim, B.J. Choi, Y.J. Kim and Y.Z. Lee, Friction and Wear Behavior of Titanium Matrix (TiB+TiC) Composites, Wear, 2011, 271, p 1962–1965.

    Article  CAS  Google Scholar 

  30. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24, p 981–988.

    Article  Google Scholar 

  31. B.J. Kooi, Y.T. Pei and J.T.M. De Hosson, The Evolution of Microstructure in a Laser Clad TiB-Ti Composite Coating, Acta Mater., 2003, 51, p 831–845.

    Article  CAS  Google Scholar 

  32. D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach and R. Poprawe, Densification Behavior, Microstructure Evolution, and Wear Performance of selective Laser Melting Processed Commercially Pure Titanium, Acta Mater., 2012, 60, p 3849–3860.

    Article  CAS  Google Scholar 

  33. P. Helmer, J. Halim, J. Zhou, R. Mohan, B. Wickman, J. Björk and J. Rosen, Investigation of 2D Boridene from First Principles and Experiments, Adv. Funct. Mater., 2022, 32, p 2109060.

    Article  CAS  Google Scholar 

  34. E. Benko, T.L. Barr, S. Hardcastle, E. Hoppe, A. Bernasik and J. Morgiel, XPS Study of the cBN-TiC System, Ceram. Int., 2001, 27, p 637–643.

    Article  CAS  Google Scholar 

  35. N. Hellgren, A. Sredenschek, A. Petruins, J. Palisaitis, F.F. Klimashin, M.A. Sortica, L. Hultman, P.O.Å. Persson and J. Rosen, Synthesis and Characterization of TiBx (1.2 ≤ x ≤ 2.8) Thin Films Grown by DC Magnetron Co-Sputtering from TiB2 and Ti Targets, Surf. Coatings Technol., 2022, 433, p 128110.

    Article  CAS  Google Scholar 

  36. C.T. Wang, H.S. Lin and W.P. Wang, Hydrothermal Synthesis of Fe [sbnd] and Nb-Doped Titania Nanobelts and their Tunable Electronic Structure toward Photovoltaic Application, Mater. Sci. Semicond. Process., 2019, 99, p 85–91.

    Article  CAS  Google Scholar 

  37. R. Huang, R. Liang, H. Fan, S. Ying, L. Wu, X. Wang and G. Yan, Enhanced Photocatalytic Fuel Denitrification over TiO2/α-Fe2O3 Nanocomposites under Visible Light Irradiation, Sci. Rep., 2017, 7, p 1–10.

    Google Scholar 

  38. F. Liu, L. Feng, J. Ren, X. Zhang and J. Jia, Tribological Properties of In Situ Fabricated Fe-Al Matrix Composites Containing SrAl2O4, FeAl2O4, and FeO at Elevated Temperatures, Tribol. Trans., 2021, 64, p 593–605.

    Article  CAS  Google Scholar 

  39. S.S. Sahay, K.S. Ravichandran, R. Atri, B. Chen and J. Rubin, Evolution of Microstructure and Phases in In Situ Processed Ti-TiB Composites Containing High Volume Fractions of TiB Whiskers, J. Mater. Res., 1999, 14, p 4214–4223.

    Article  CAS  Google Scholar 

  40. S.C. Tjong and Y.-W. Mai, Processing-Structure-Property Aspects of Particulate-and Whisker-Reinforced Titanium Matrix Composites, Compos. Sci. Technol., 2008, 68, p 583–601.

    Article  CAS  Google Scholar 

  41. K.S. Ravi Chandran, K.B. Panda and S.S. Sahay, TiBw-Reinforced Ti composites: processing, properties, application prospects, and Research Needs, Jom, 2004, 56, p 42–48.

    Article  Google Scholar 

  42. L. Huang, T. Duan, Q. An, Y. Chen, J. Bai, L. Geng and S. Lin, Gas Tungsten Arc Welding of Network Structured Titanium Matrix Composite, Sci. Technol. Weld. Join., 2018, 23, p 357–364.

    Article  CAS  Google Scholar 

  43. Z. Xinghong, X. Qiang, H. Jiecai and V.L. Kvanin, Self-Propagating High Temperature Combustion Synthesis of TiB/Ti Composites, Mater. Sci. Eng., 2003, 348, p 41–46.

    Article  Google Scholar 

  44. R. Tyagi, S.K. Nath and S. Ray, Effect of Martensite Content on Friction and Oxidative Wear Behavior of 0.42 Pct Carbon Dual-Phase Steel, Metall Mater. Trans. A Phys. Metall. Mater. Sci., 2002, 33, p 3479–3488.

    Article  Google Scholar 

  45. Y. Qin, L. Geng and D. Ni, Dry Sliding Wear Behavior of Extruded Titanium Matrix Composite Reinforced by In Situ TiB Whisker and TiC Particle, J. Mater. Sci., 2011, 46, p 4980–4985.

    Article  CAS  Google Scholar 

  46. J. Li, M. Sun, X. Ma and G. Tang, Structure and Tribological Performance of Modified Layer on Ti6Al4V alloy by Plasma-Based ion Implantation with Oxygen, Wear, 2006, 261, p 1247–1252.

    Article  CAS  Google Scholar 

  47. H.J. Song and Z.Z. Zhang, Study on the Tribological Behaviors of the Phenolic Composite Coating Filled with Modified Nano-TiO2, Tribol. Int., 2008, 41, p 396–403.

    Article  CAS  Google Scholar 

  48. Z. Min, Friction and Wear Properties of TiB 2P/Al Composite, Compos. Part A Appl. Sci. Manuf., 2006, 37, p 1916–1921.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajnesh Tyagi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A., Tyagi, R. & Jindal, V. Reciprocating Wear of Ti-TiB In Situ Composites Synthesized via Vacuum Arc Melting. J. of Materi Eng and Perform 31, 9985–9996 (2022). https://doi.org/10.1007/s11665-022-07002-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07002-0

Keywords

Navigation