Skip to main content
Log in

High-Temperature Deformation Constitutive Model of Zircaloy-4 Based on the Support Vector Regression Algorithm during Hot Rolling

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Due to the small range of plastic deformation temperatures during hot rolling of Zircaloy-4 plates, it is important to determine the appropriate flow behaviors for plate profile control of Zircaloy-4 plates. The developed microstructures and mechanical properties of Zircaloy-4 are evaluated by metallographic observations and Gleeble-3800 thermal simulation tester. To meet the need of data with small-sample properties, the support vector regression (SVR) algorithm is adopted to predict the constitutive model of Zircaloy-4, and the improved particle swarm optimization algorithm (IPSO) is used to optimize parameters of SVR algorithm. Meanwhile, results indicate that the correlation coefficient (R2) value of zirconium alloy constitutive model is 96.805%. Based on employed algorithm, comparing with modified Arrhenius model, the results show the superiority of IPSO-SVR algorithm. This provides an important theoretical basis for FE simulation of controlling the Zircaloy-4 plate shape during hot rolling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Balasundar, T. Raghu, and B.P. Kashyap, Modeling the Hot Working Behavior of Near-α Titanium Alloy IMI 834, Prog. Nat. Sci. Mater. Int., 2013, 6, p 598–607. https://doi.org/10.1016/j.pnsc.2013.11.004

    Article  Google Scholar 

  2. D.D. Chen, Y.C. Lin, and X.M. Chen, A Strategy to Control Microstructures of a Ni-Based Superalloy during Hot Forging Based on Particle Swarm Optimization Algorithm, Adv. Manuf., 2019, 7, p 238–247. https://doi.org/10.1007/s40436-019-00259-0

    Article  Google Scholar 

  3. D.G. He, Y.C. Lin, J. Chen, D.D. Chen, J. Huang, Y. Tang, and M.S. Chen, Microstructural Evolution and Support Vector Regression Model for an Aged Ni-Based Superalloy during Two-Stage Hot Forming with Stepped Strain Rates, Mater. Des., 2018, 154, p 51–62. https://doi.org/10.1016/j.matdes.2018.05.022

    Article  CAS  Google Scholar 

  4. G.L. Jia, F.G. Li, Q.H. Li, H.Q. Li, and Z. Li, Prediction of the Hot Deformation Behavior for Aermet100 Steel using an Artificial Neural Network, Comput. Mater. Sci., 2010, 48(3), p 626–632. https://doi.org/10.1016/j.commatsci.2010.02.031

    Article  CAS  Google Scholar 

  5. J.G. Cao, T.C. Wang, H.B. Li, Y. Qiao, D. Wen, and Y.S. Zhou, High-Temperature Deformation Constitutive Relationship of Non-Oriented Electrical Steel Based on Arrhenius Improved Model, Chin. J. Mech. Eng., 2016, 52(4), p 90–96. https://doi.org/10.3901/JME.2016.04.090

    Article  Google Scholar 

  6. W.G. Wang and B.X. Zhou, The Effect of Rolling Temperature on the Texture of Zr-4 Alloy Plate, Nucl. Power Eng., 1996, 3, p 255–261.

    Google Scholar 

  7. Q. Peng, W.J. Zhao, Y.Z. Liu, and C.L. Sun, Texture Evolution of Zr-4 Alloy Sheet Rolling in α Phase High Temperature Zone, Nucl. Power Eng., 2003, 2, p 33–136. https://doi.org/10.3969/j.issn.0258-0926.2003.02.008

    Article  Google Scholar 

  8. J.K. Chakravartty, G.K. Dey, and S. Banerjee, Dynamic Recrystallisation During Hot Working of Zr-2.5Nb Characterisation using Processing Maps, Metal. Sci. Tech., 1996, 12(9), p 705–716. https://doi.org/10.1179/mst.1996.12.9.705

    Article  CAS  Google Scholar 

  9. J.K. Chakravartty, S. Banerjee, Y.V.R.K. Prasad, and M.K. Asundi, Hot-Working Characteristics of Zircaloy-2 in the Temperature Range of 650–950°C, J. Nucl. Mater., 1992, 187(3), p 260–271. https://doi.org/10.1016/0022-3115(92)90506-G

    Article  CAS  Google Scholar 

  10. J.J. Liu, K.L. Wang, X.Y. Gao, X. Li, and F. Zhou, Hot Deformation Behavior and Processing Map of Zr-4 Alloy, J. Nucl. Mater., 2020, 531, 151993. https://doi.org/10.1016/j.jnucmat.2020.151993

    Article  CAS  Google Scholar 

  11. X.Y. Gao, in Research on Hot Deformation Behavior of Zr-4 Alloy and Optimization of Process Parameters (2018). CNKI: CDMD:2.1018.816881

  12. B.H. Jia, W.D. Song, H.P. Tang, Z.H. Wang, X.N. Mao, and J.G. Ning, Hot Deformation Behavior and Constitutive Model of TC18 Alloy During Compression, Rare Met., 2014, 33(004), p 383–389. https://doi.org/10.1007/s12598-014-0328-x

    Article  CAS  Google Scholar 

  13. L. Zhang, Q. Wang, Y.B. Yang, and C. Cheng, Thermal Deformation Strain Compensation Constitutive Model of Cast Rare Earth Magnesium Alloy, Hot WorK. Tech., 2015, 16, p 131–134. https://doi.org/10.14158/j.cnki.1001-3814.2015.16.037

    Article  Google Scholar 

  14. M. Bagheripoor and H. Bisadi, Application of Artificial Neural Networks for the Prediction of Roll Force and Roll Torque in Hot Strip Rolling Process, Appl. Math. Model., 2013, 37(7), p 4593–4607. https://doi.org/10.1016/j.apm.2012.09.070

    Article  Google Scholar 

  15. Z. Sun, X. Wang, and J. Zhang, Prediction and Control of Equiaxed α in Near-β Forging of TA15 Ti-Alloy Based on BP Neural Network: for Purpose of Tri-Modal Microstructure, Mater. Sci. Eng., 2014, 591, p 18–25. https://doi.org/10.1016/j.msea.2013.10.080

    Article  CAS  Google Scholar 

  16. R. Kapoor, D. Pal, and J.K. Chakravartty, Use of Artificial Neural Networks to Predict the Deformation Behavior of Zr-2.5 Nb-0.5 Cu, J Mater. Process. Technol., 2005, 169(2), p 199–205. https://doi.org/10.1016/j.jmatprotec.2005.03.022

    Article  CAS  Google Scholar 

  17. A. Abdiansah and R. Wardoyo, Time Complexity Analysis of Support Vector Machines (SVM) in LibSVM, Int. J. Comput. Appl., 2015, 128(3), p 975–8887. https://doi.org/10.5120/ijca2015906480

    Article  Google Scholar 

  18. C. Chen, G.H. Zhang, Z. Qian, R.A. Tarefder, and Z. Tian, Investigating Driver Injury Severity Patterns in Rollover Crashes using Support Vector Machine Models, Accid. Anal. Prev., 2016, 90, p 128–139. https://doi.org/10.1016/j.aap.2016.02.011

    Article  Google Scholar 

  19. M. Goudjil, M. Koudil, M. Bedda, and N. Ghoggali, A Novel Active Learning Method using SVM for Text Classification, Int. J. Autom. Comput., 2018, 15(3), p 290–298. https://doi.org/10.1007/s11633-015-0912-z

    Article  Google Scholar 

  20. S. Zhang, W.L. Jiang, and J.H. Zhang, Research on Precise Setting Method of Rolling Force of Cold Tandem Mill Based on Support Vector Machine Prediction, Hydraul. Pneum., 2017, 07, p 50–55. https://doi.org/10.11832/j.issn.1000-4858.2017.07.009

    Article  Google Scholar 

  21. Z.M. Chen, F. Luo, and X.H. Huang, Rolling Force Prediction Based on Chaos Optimization Support Vector Machine, Control Decis., 2009, 24(006), p 808–812. https://doi.org/10.3321/j.issn:1001-0920.2009.06.002

    Article  Google Scholar 

  22. J.Y. Zhang, Y.P. Liao, S.F. Wang, and J. Han, Study on Driving Decision-Making Mechanism of Autonomous Vehicle Based on an Optimized Support Vector Machine Regression, Appl. Sci., 2017, 8(1), p 13. https://doi.org/10.3390/app8010013

    Article  CAS  Google Scholar 

  23. N. Guenther and M. Schonlau, Support Vector Machines, Stata J.: Promot. Commun. Stat. Stata., 2016, 16(4), p 917–937. https://doi.org/10.1177/1536867X1601600407

    Article  Google Scholar 

  24. A.L. Chen, Deformation Resistance Prediction Model and Its Application Research, Comput. Integr. Manuf. Syst., 2007, 13(9), p 1816–1819. https://doi.org/10.1109/CISE.2009.5363118

    Article  Google Scholar 

  25. G.P. Zhang, W.J. Wang, J. Du, H. Liu, and P. Varilone, A Multi-objective Optimal Operation of a Stand-Alone Microgrid using SAPSO Algorithm, J. Electr. Comput. Eng., 2020, 19, p 1–16. https://doi.org/10.1155/2020/6042105

    Article  Google Scholar 

  26. P. Liu, M.C. Xie, J. Bian, H.S. Li, and L.L. Song, A Hybrid PSO–SVM Model Based on Safety Risk Prediction for the Design Process in Metro Station Construction, Int. J. Environ. Res. Public Health, 2020, 17(5), p 1714. https://doi.org/10.3390/ijerph17051714

    Article  Google Scholar 

  27. S. Sarkar, S. Vinay, R. Raj, J. Maiti, and P. Mitra, Application of Optimized Machine Learning Techniques for Prediction of Occupational Accidents, Comput. Oper. Res., 2019, 106, p 210–224. https://doi.org/10.1016/j.cor.2018.02.021

    Article  Google Scholar 

  28. A. Ratnaweera, S.K. Halgamuge, and H.C. Watson, Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients, IEEE Trans. Evol. Comput., 2004, 8(3), p 240–255. https://doi.org/10.1109/TEVC.2004.826071

    Article  Google Scholar 

  29. P.Q. Huang, J.C. Liu, and S.B. Tan, Application of Hybrid Multi-objective Particle Swarm Optimization Algorithm in Load Distribution Optimization of Hot Finishing Rolling, Control Theory Appl., 2017, 34(1), p 93–100. https://doi.org/10.7641/CTA.2017.60299

    Article  Google Scholar 

  30. Z.H. Wang, Y.M. Liu, and D.Y. Gong, A New Predictive Model for Strip Crown in Hot Rolling by Using the Hybrid AMPSO-SVR-Based Approach, Steel Res. Int., 2018, 89(7), p 180003. https://doi.org/10.1002/srin.201800003

    Article  CAS  Google Scholar 

  31. L.Y. Wang, L. Li, and Z.H. Zhang, Accurate Descriptions Of Hot Flow Behaviors Across β Transus of Ti-6Al-4V Alloy by Intelligence Algorithm GA-SVR, J. Mater. Eng. Perform., 2016, 25(9), p 1–12. https://doi.org/10.1007/s11665-016-2230-1

    Article  CAS  Google Scholar 

  32. M. SeyedSalehi and S. Serajzadeh, A Model to Predict Recrystallization Kinetics in Hot Strip Rolling using Combined Artificial Neural Network and Finite Elements, J. Mater. Eng. Perform., 2009, 18, p 1209–1217. https://doi.org/10.1007/s11665-009-9359-0

    Article  CAS  Google Scholar 

  33. P. Pourabdollah and S. Serajzadeh, A Study On Deformation Behavior of 304l Stainless Steel During and After Plate Rolling at Elevated Temperatures, J. Mater. Eng. Perform., 2017, 26, p 885–893. https://doi.org/10.1007/s11665-016-2475-8

    Article  CAS  Google Scholar 

  34. J. Ni, L. Wang, and Z.H. Zhang, Research on the Interface Heat Transfer Behavior of Zr-4 Alloy and H13 Die Steel, Rare Met. Mater. Eng., 2019, 48(05), p 1579–1583.

    CAS  Google Scholar 

  35. Y.L. Li, J.G. Cao, L. Qiu, L. Kong, and Y.Z. Zhou, Effect of Strip Edge Temperature Drop of Electrical Steel on Profile and Flatness during Hot Rolling Process, Adv. Mech. Eng., 2019, 11(4), p 168781401984047. https://doi.org/10.1177/1687814019840471

    Article  Google Scholar 

  36. J.G. Cao, X.T. Chai, Y.L. Li, N. Kong, S.H. Jia, and W. Zeng, Integrated Design of Roll Contours for Strip Edge Drop and Crown Control in Tandem Cold Rolling Mills, J. Mater. Process. Technol., 2018, 252(2), p 432–439. https://doi.org/10.1016/j.jmatprotec.2017.09.038

    Article  Google Scholar 

  37. X.C. Guo, B.F. Luan, and J.W. Chen, Research on the Precipitation Phase Distribution Characteristics of N18 Zirconium Alloy, Rare Met. Mater. Eng., 2011, 40(05), p 813–816.

    CAS  Google Scholar 

  38. K.K. Saxena, S.D. Yadav, and S. Sonkar, Effect of Temperature and Strain Rate on Deformation Behavior of Zirconium Alloy: Zr-2.5Nb-0.5Cu, Procedia Mater. Sci., 2014, 6, p 188–193. https://doi.org/10.1016/j.mspro.2014.07.035

    Article  CAS  Google Scholar 

  39. R.N. Wang, Z.P. Xi, Y.Q. Zhao, and Y.L. Qi, Analysis of the Hot Deformation Structure and Mechanism of Zr-4 Alloy, Heat Treat. Met., 2007, 32(6), p 15–18. https://doi.org/10.3969/j.issn.0254-6051.2007.06.004

    Article  CAS  Google Scholar 

  40. A. Cevik, A.E. Kurtoğlu, M. Bilgehan, M.E. Gülşan, and H.M. Albegmprli, Support Vector Machines in Structural Engineering: A Review, J. Civ. Eng. Manag., 2015, 21(3), p 261–281. https://doi.org/10.3846/13923730.2015.1005021

    Article  Google Scholar 

  41. C.S. Jiang and G.Q. Liang, Modeling Shear Strength of Medium- to Ultra-High-Strength Concrete Beams with Stirrups using SVR and genetic algorithm, Soft. Comput., 2021, 25(16), p 10661–10675. https://doi.org/10.1007/s00500-021-06027-2

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science and Technology Major Project of China (2019ZX06002001-004), the Scientific and Technological Innovation Foundation of Shunde Graduate School of University of Science and Technology Beijing (BK19A006) and the Innovation Method Fund of China (2016IM010300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Cao, J., Wang, L. et al. High-Temperature Deformation Constitutive Model of Zircaloy-4 Based on the Support Vector Regression Algorithm during Hot Rolling. J. of Materi Eng and Perform 31, 10237–10247 (2022). https://doi.org/10.1007/s11665-022-06987-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06987-y

Keywords

Navigation