Skip to main content
Log in

A Study on Deformation Behavior of 304L Stainless Steel During and After Plate Rolling at Elevated Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, microstructural evolutions and mechanical properties of AISI 304L stainless steel were studied after rolling operations at elevated temperatures. Rolling experiments were conducted under warm and hot rolling conditions in the range of 600-1000 °C employing different reductions. Then, the developed microstructures and the mechanical properties of the steel were evaluated by means of uniaxial tensile testing, metallographic observations, and x-ray diffraction method. Besides, two-dimensional finite element analysis coupled with artificial neural network modeling was developed to assess thermo-mechanical behavior of the steel during and after rolling. The results show that inhomogeneities in strain and temperature distributions are reduced under warm rolling conditions. Static recrystallization can be operative under hot rolling conditions and relatively low reduction, i.e., reduction of 25%. However, for the case of higher reductions, the rate of recrystallization decreases considerably owing to severe temperature drop in the plate being rolled. Furthermore, the rolled plates show negative strain rate sensitivity while this phenomenon is affected by the rolling temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W.L. Roberts, Hot Rolling of Steels, Marcel Dekker Inc., New York, 1983

    Google Scholar 

  2. S.L. Semiatin and J.H. Holbrook, Plastic Flow Phenomenology of 304L Stainless Steel, Metall. Trans. A, 1983, 14, p 1681–1695

    Article  Google Scholar 

  3. P. Dadras, Flow Stress Equations for Type 304 Stainless and AISI, 1055 Steel, ASME Trans. J. Eng. Mater. Technol., 1055, 107(1985), p 97–100

    Google Scholar 

  4. H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot Working Characteristics of Steels in Austenitic State, Mater. Sci. Eng., 1995, 83, p 293–310

    Google Scholar 

  5. M. El Wahabi, J.M. Cabrera, and J.M. Prado, Hot Working of Two AISI, 304 Steels: A Comparative Study, Mater. Sci. Eng. A, 2003, 343, p 116–125

    Article  Google Scholar 

  6. K.J.R. Rasmussen, T. Burns, P. Bezkorovainy, and M.R. Bambach, Numerical Modelling of Stainless Steel Plates in Compression, J. Constr. Steel Res., 2003, 59, p 1345–1362

    Article  Google Scholar 

  7. D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri, Flow Behavior and Microstructural Evolution During Hot Deformation of AISI, Type 316 L(N) Austenitic Stainless Steel, Mater. Sci. Eng. A, 2011, 528, p 8565–8572

    Article  Google Scholar 

  8. G.Q. Hou and L. Zhu, Influence of Strain Rate on Hot Ductility of Austenitic Stainless Steel Slab, Mater. Sci. Technol., 2013, 29, p 568–572

    Article  Google Scholar 

  9. A.J. McLaren and C.M. Sellars, Modelling Distribution of Microstructure During Hot Rolling of Stainless Steel, Mater. Sci. Technol., 1992, 8, p 1090–1094

    Article  Google Scholar 

  10. S. Venugopal, S. Venugopal, P.V. Sivaprasad, M. Vasudevan, S.L. Mannan, S.K. Jha, P. Pandey, and Y.V.R.K. Prasad, Validation of Processing Maps for 304L Stainless Steel Using Hot Forging, Rolling and Extrusion, J. Mater. Process. Technol., 1995, 59, p 343–350

    Article  Google Scholar 

  11. S. Cho and Y. Loo, Hot Rolling Simulations of Austenitic Stainless Steel, J. Mater. Sci, 2001, 36, p 4267–4272

    Article  Google Scholar 

  12. A. Di Schino, J.M. Kenny, I. Salvatori, and G. Abbruzzese, Modelling Primary Recrystallization and Grain Growth in a Low Nickel Austenitic Stainless Steel, J. Mater. Sci., 2001, 36, p 593–601

    Article  Google Scholar 

  13. S. Kim, Y. Lee, and B. Jang, Modeling of Recrystallization and Austenite Grain Size for AISI, 316 Stainless Steel and Its Application to Hot Bar Rolling, Mater. Sci. Eng. A, 2003, 357, p 235–239

    Article  Google Scholar 

  14. A. Belyakov, T. Sakai, and H. Miura, Grain Refinement in a 304 Stainless Steel Caused by Multiple Deformation at 0.5Tm, ISIJ Int., 2000, 40(Supplement), p SI64–SI68

    Google Scholar 

  15. R.L. Higginson and C.M. Sellars, The Effect of Strain Path Reversal During Hot Rolling on Austenitic Stainless Steel, Mater. Sci. Eng. A, 2002, 338, p 323–330

    Article  Google Scholar 

  16. S. Frechard, A. Redjaimia, E. Lach, and A. Lichtenberger, Mechanical Behavior of Nitrogen-Alloyed Austenitic Stainless Steel Hardened by Warm Rolling, Mater. Sci. Eng. A, 2006, 415, p 219–224

    Article  Google Scholar 

  17. M. Tikhonova, V. Dudko, A. Belyakov, and R. Kaibyshev, The Formation of Fine-Grained Structure in S304H-Type Austenitic Stainless Steel During Hot-to-Warm Working, Mater. Sci. Forum., 2012, 715–716, p 380–385

    Article  Google Scholar 

  18. A.F. Padilha and P.R. Rios, Decomposition of Austenite in Austenitic Stainless Steel, ISIJ Int., 2002, 42, p 325–337

    Article  Google Scholar 

  19. A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock, Jr., Deformation-Induced Phase Transformation and Strain Hardening in Type 304 Austenitic Stainless Steel, Metall. Mater. Trans. A, 2006, 37, p 1875–1896

    Article  Google Scholar 

  20. S. Kobayashi, S. Oh, T. Altan, Metal Forming and the Finite Element Method, Oxford University Press, Oxford, 1989, Chapters 6–7.

  21. P. Tong and N. Rossettos, Finite Element Method: Basic Technique and Implementation, MIT Press, Cambridge, 1977

    Google Scholar 

  22. J.G. Lenard, M. Pietrzyk, and L. Cser, Mathematical Physical Simulation, of the Properties of Hot Rolled Products, Elsevier, New York, 1999 (Chapter 5)

    Google Scholar 

  23. R.M. Golden, Mathematical Methods for Neural Network Analysis and Design, MIT Press, Cambridge, 1996

    Google Scholar 

  24. Y.C. Lin, J. Zhang, and J. Zhong, Application of Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy Steel, Comput. Mater. Sci., 2008, 43, p 752–758

    Article  Google Scholar 

  25. K.H. Huebner and E.A. Thornton, The Finite Element Method for Engineers, 2nd ed., Wiley, New York, 1982

    Google Scholar 

  26. S.J. Chen and A.A. Tseng, Spray and Jet Cooling in Steel Rolling, Int. J. Heat Fluid Flow, 1992, 13, p 358–369

    Article  Google Scholar 

  27. Y. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, 1997

    Google Scholar 

  28. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo, Twinning and Martensite in a 304 Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 552, p 514–522

    Article  Google Scholar 

  29. J. Talonen, P. Nenonen, G. Pape, and H. Hanninen, Effect of Strain Rate on the Strain-Induced-Martensite Transformation and Mechanical Properties Of Austenitic Stainless Steels, Metall. Mater. Trans., 2005, 36, p 421–432

    Article  Google Scholar 

  30. H.C. Shin, T.K. Ha, and Y.W. Chang, Kinetics of Deformation Induced Martensitic Transformation in a 304 Stainless Steel, Scripta Mater., 2001, 45, p 823–829

    Article  Google Scholar 

  31. G.E. Dieter, H.A. Kuhn, and S.L. Semiatin, Ed., Handbook of Workability and Process Design, ASM International, Materials Park, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Serajzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourabdollah, P., Serajzadeh, S. A Study on Deformation Behavior of 304L Stainless Steel During and After Plate Rolling at Elevated Temperatures. J. of Materi Eng and Perform 26, 885–893 (2017). https://doi.org/10.1007/s11665-016-2475-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2475-8

Keywords

Navigation