Skip to main content
Log in

Heat Treatment Behaviour of SLM-Built Titanium Matrix Composite: Microstructure and Tribological Performance

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) technique was used to fabricate in situ Ti-6Al-4V+TiB titanium matrix composite (TMC) samples by addition of sub-micron TiB2 ceramic particles in Ti-6Al-4V powder. The TMC samples were further subjected to annealing treatment at 900 °C for 30 minutes in an inert atmosphere. The influence of annealing treatment on the microstructure development was characterized using optical microscope and field emission scanning electron microscope (FESEM). The addition of TiB2 (0.2, 0.5 and 1.0 wt.%) induces drastic changes in the morphology of the as-built TMC samples. After annealing, a complete phase transformation occurred in pure Ti-6Al-4V alloy to lamellar shaped alpha and globular beta phase. In TMC samples, the increase in the weight fraction of TiB2 ceramic particles resulted in substantial grain refinement; however, grain coarsening was observed upon annealing treatment. Refinement in microstructure was associated with pinning effect of TiB whiskers. Coarsening of TiB whiskers also occurred with predominant increase in length as compared to width. Development in tribological performance was attributed to microstructure refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Banerjee and J.C. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013 https://doi.org/10.1016/j.actamat.2012.10.043

    Article  Google Scholar 

  2. R.R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A., 1996 https://doi.org/10.1016/0921-5093(96)10233-1

    Article  Google Scholar 

  3. I. Inagaki, T. Takechi, Y. Shirai, N. Ariyasu, Application and Features of Titanium for the Aerospace Industry. Nippon Steel Sumitomo Met. Tech. Rep. (2014).

  4. A. Molinari, G. Straffelini, B. Tesi and T. Bacci, Dry Sliding Wear Mechanisms of the Ti6Al4V Alloy, Wear, 1997, 208, p 105–112. https://doi.org/10.1016/S0043-1648(96)07454-6

    Article  CAS  Google Scholar 

  5. H. Dong, Tribological properties of titanium-based alloys, Surf. Eng. Light Alloy. Alum. Magnes. Titan. Alloy, 2010 https://doi.org/10.1533/9781845699451.1.58

    Article  Google Scholar 

  6. O.M. Ivasishin, D.G. Savvakin, I.S. Bielov, V.S. Moxson, V.A. Duz, R. Davies, C. Lavender, BEPM Synthesis of Ti-6Al-4V Alloy Using Hydrogenated Titanium, Euro PM 2005 Powder Metall. Congr. Exhib. 1, 115–120 (2005)

  7. M.A. Xavior and J.P.A. Kumar, Machinability of Hybrid Metal Matrix Composite - A Review, Procedia Eng., 2017 https://doi.org/10.1016/j.proeng.2017.01.264

    Article  Google Scholar 

  8. S.C. Tjong and Z.Y. Ma, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R Reports., 2000 https://doi.org/10.1016/S0927-796X(00)00024-3

    Article  Google Scholar 

  9. S. Dadbakhsh, R. Mertens, L. Hao, J. Van Humbeeck and J.P. Kruth, Selective Laser Melting to Manufacture “In Situ” Metal Matrix Composites: A Review, Adv. Eng. Mater., 2019 https://doi.org/10.1002/adem.201801244

    Article  Google Scholar 

  10. K.B. Panda and K.S. Ravi Chandran, Synthesis of Ductile Titanium-Titanium Boride (Ti-TiB) Composites with a Beta-Titanium Matrix: The Nature of TiB Formation and Composite Properties, Mater. Trans. A Phys. Metall. Mater. Sci, 2003 https://doi.org/10.1007/s11661-003-0249-z

    Article  Google Scholar 

  11. A.S. Patil, V.D. Hiwarkar, P.K. Verma and R.K. Khatirkar, Effect of TiB2 Addition on the Microstructure and Wear Resistance of Ti-6Al-4V Alloy Fabricated Through Direct Metal Laser Sintering (DMLS), J. Alloys Compd., 2019, 777, p 165–173. https://doi.org/10.1016/j.jallcom.2018.10.308

    Article  CAS  Google Scholar 

  12. P.K. Verma, S. Warghane, U. Nichul, P. Kumar, A. Dhole and V. Hiwarkar, Effect of Boron Addition on Microstructure, Hardness and Wear Performance of Ti-6Al-4 V Alloy Manufactured by Laser Powder Bed Fusion Additive Manufacturing, Mater. Charact., 2021 https://doi.org/10.1016/j.matchar.2020.110848

    Article  Google Scholar 

  13. C. Cai, C. Radoslaw, J. Zhang, Q. Yan, S. Wen, B. Song and Y. Shi, In-Situ Preparation and Formation of TiB/Ti-6Al-4V Nanocomposite Via Laser Additive Manufacturing: Microstructure Evolution and Tribological Behavior, Powder Technol., 2019, 342, p 73–84. https://doi.org/10.1016/j.powtec.2018.09.088

    Article  CAS  Google Scholar 

  14. M. Forming, Near Net Shape Manufacturing Processes, Springer International Publishing, Cham, 2019. https://doi.org/10.1007/978-3-030-10579-2

  15. Y. Huang, M.C. Leu, J. Mazumder and A. Donmez, Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations, J. Manuf. Sci. Eng., 2015, 137, 014001. https://doi.org/10.1115/1.4028725

    Article  Google Scholar 

  16. D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  CAS  Google Scholar 

  17. S. Bremen, W. Meiners and A. Diatlov, Selective Laser Melting: A Manufacturing Technology for the Future?, Laser Tech. J., 2012, 9, p 33–38. https://doi.org/10.1002/latj.201290018

    Article  Google Scholar 

  18. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino and J. Eckert, Selective Laser Melting of In Situ Titanium-Titanium Boride Composites: Processing, Microstructure and Mechanical Properties, Acta Mater., 2014, 76, p 13–22. https://doi.org/10.1016/j.actamat.2014.05.022

    Article  CAS  Google Scholar 

  19. L. Parry, I.A. Ashcroft and R.D. Wildman, Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-Mechanical Simulation, Addit. Manuf., 2016 https://doi.org/10.1016/j.addma.2016.05.014

    Article  Google Scholar 

  20. L. Bertini, F. Bucchi, F. Frendo, M. Moda and B.D. Monelli, Residual Stress Prediction in Selective Laser Melting: A Critical Review of Simulation Strategies, Int. J. Adv. Manuf. Technol., 2019 https://doi.org/10.1007/s00170-019-04091-5

    Article  Google Scholar 

  21. Q. Peng, S. Dong, S. Yan, P. Men, B. Wang, An Overview of Defects in Laser Melting Deposition Forming Products and the Corresponding Controlling Methods. Cailiao Daobao/Materials Rev. (2018). https://doi.org/10.11896/j.issn.1005-023X.2018.15.019.

  22. J. Song, W. Wu, L. Zhang, B. He, L. Lu, X. Ni, Q. Long and G. Zhu, Role of Scanning Strategy on Residual Stress Distribution in Ti-6Al-4V Alloy Prepared by Selective Laser Melting, Optik (Stuttg)., 2018 https://doi.org/10.1016/j.ijleo.2018.05.128

    Article  Google Scholar 

  23. W. Xiong, L. Hao, Y. Li, D. Tang, Q. Cui, Z. Feng and C. Yan, Effect of Selective Laser Melting Parameters on Morphology, Microstructure, Densification and Mechanical Properties of Supersaturated Silver Alloy, Mater. Des., 2019 https://doi.org/10.1016/j.matdes.2019.107697

    Article  Google Scholar 

  24. R. Sharma and A. Kumar, Track-Scale Simulations of Selective Laser Melting to Investigate Development and Mitigation of Thermal Stresses, Lasers Manuf. Mater. Process., 2019 https://doi.org/10.1007/s40516-019-00103-0

    Article  Google Scholar 

  25. A. Saboori, D. Gallo, S. Biamino, P. Fino and M. Lombardi, An Overview of Additive Manufacturing of Titanium Components by Directed Energy Deposition: Microstructure and Mechanical Properties, Appl. Sci., 2017 https://doi.org/10.3390/app7090883

    Article  Google Scholar 

  26. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010 https://doi.org/10.1016/j.actamat.2010.02.004

    Article  Google Scholar 

  27. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang and X. Zeng, Formation and Control of Martensite in Ti-6Al-4V Alloy Produced by Selective Laser Melting, Mater. Des., 2016 https://doi.org/10.1016/j.matdes.2016.06.117

    Article  Google Scholar 

  28. Y. Cui, K. Aoyagi, Y. Zhao, K. Yamanaka, Y. Hayasaka, Y. Koizumi, T. Fujieda and A. Chiba, Manufacturing of a Nanosized TiB Strengthened Ti-Based Alloy Via Electron Beam Powder Bed Fusion, Addit. Manuf., 2020 https://doi.org/10.1016/j.addma.2020.101472

    Article  Google Scholar 

  29. Y. Liu, Y. Yang and D. Wang, A Study on the Residual Stress During Selective Laser Melting (SLM) of Metallic Powder, Int. J. Adv. Manuf. Technol., 2016 https://doi.org/10.1007/s00170-016-8466-y

    Article  Google Scholar 

  30. G. Vastola, G. Zhang, Q.X. Pei and Y.W. Zhang, Controlling of Residual Stress in Additive Manufacturing of Ti6Al4V by Finite Element Modeling, Addit. Manuf., 2016 https://doi.org/10.1016/j.addma.2016.05.010

    Article  Google Scholar 

  31. P. Mercelis and J.P. Kruth, Residual Stresses in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2006 https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  32. A.M. Khorasani, I. Gibson, M. Goldberg and G. Littlefair, On the Role of Different Annealing Heat Treatments on Mechanical Properties and Microstructure of Selective Laser Melted and Conventional Wrought Ti-6Al-4V, Rapid Prototyp. J., 2017 https://doi.org/10.1108/RPJ-02-2016-0022

    Article  Google Scholar 

  33. B. Vrancken, L. Thijs, J.P. Kruth and J. Van Humbeeck, Heat Treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and Mechanical Properties, J. Alloys Compd., 2012 https://doi.org/10.1016/j.jallcom.2012.07.022

    Article  Google Scholar 

  34. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992 https://doi.org/10.1557/jmr.1992.1564

    Article  Google Scholar 

  35. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh and S. Suresh, Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation, Acta Mater., 2001, 49, p 3899–3918. https://doi.org/10.1016/S1359-6454(01)00295-6

    Article  CAS  Google Scholar 

  36. S. Roy, S. Suwas, S. Tamirisakandala, D.B. Miracle and R. Srinivasan, Development of Solidification Microstructure in Boron-Modified Alloy Ti–6Al–4V–0.1B, Acta Mater., 2011, 59, p 5494–5510. https://doi.org/10.1016/j.actamat.2011.05.023

    Article  CAS  Google Scholar 

  37. O.O. Bilous, L.V. Artyukh, A.A. Bondar, T.Y. Velikanova, M.P. Burka, M.P. Brodnikovskyi, O.S. Fomichov, N.I. Tsyganenko and S.O. Firstov, Effect of Boron on the Structure and Mechanical Properties of Ti–6Al and Ti–6Al–4V, Mater. Sci. Eng. A., 2005, 402, p 76–83. https://doi.org/10.1016/j.msea.2005.05.011

    Article  CAS  Google Scholar 

  38. R. Banerjee, P.C. Collins, A. Genç and H.L. Fraser, Direct Laser Deposition of In Situ Ti–6Al–4V–TiB Composites, Mater. Sci. Eng. A., 2003, 358, p 343–349. https://doi.org/10.1016/S0921-5093(03)00299-5

    Article  CAS  Google Scholar 

  39. W.O. Soboyejo, R.J. Lederich and S.M.L. Sastry, Mechanical Behavior of Damage Tolerant TiB Whisker-Reinforced In Situ Titanium Matrix Composites, Acta Metall. Mater., 1994 https://doi.org/10.1016/0956-7151(94)90199-6

    Article  Google Scholar 

  40. M.J. Bermingham, S.D. McDonald, D.H. StJohn and M.S. Dargusch, Beryllium as a Grain Refiner in Titanium Alloys, J. Alloys Compd., 2009 https://doi.org/10.1016/j.jallcom.2009.03.016

    Article  Google Scholar 

  41. Z. Fan, Z.X. Guo and B. Cantor, The Kinetics and Mechanism of Interfacial Reaction in Sigma Fibre-Reinforced Ti MMCs, Compos. Part A Appl. Sci. Manuf., 1997 https://doi.org/10.1016/S1359-835X(96)00105-4

    Article  Google Scholar 

  42. M. Mrotzek and E. Nembach, Ostwald Ripening of Precipitates During Two Successive Heat Treatments Performed at Different Temperatures, Acta Mater., 2008, 56, p 150–154. https://doi.org/10.1016/j.actamat.2007.09.024

    Article  CAS  Google Scholar 

  43. V.P. Zhdanov, Ostwald Ripening on a Composite Support, Phys. A Stat. Mech. Its Appl., 2020, 547, 124431. https://doi.org/10.1016/j.physa.2020.124431

    Article  Google Scholar 

  44. P. Streitenberger and D. Zöllner, The Envelope of size Distributions in Ostwald Ripening and Grain Growth, Acta Mater., 2015, 88, p 334–345. https://doi.org/10.1016/j.actamat.2015.01.035

    Article  CAS  Google Scholar 

  45. H. Feng, Y. Zhou, D. Jia, Q. Meng and J. Rao, Growth Mechanism of In Situ TiB Whiskers in Spark Plasma Sintered TiB/Ti Metal Matrix Composites, Cryst. Growth Des., 2006, 6, p 1626–1630. https://doi.org/10.1021/cg050443k

    Article  CAS  Google Scholar 

  46. Y.Z. Hailiang Li, D. Jia, Z. Yang, X. Liao, H. Jin and D. Cai, Effect of Heat Treatment on Microstructure Evolution and Mechanical Properties of Selective Laser Melted Ti–6Al–4V and TiB/Ti–6Al–4V Composite: A Comparative Study, Mater. Sci. Eng. A., 2021 https://doi.org/10.1016/j.msea.2020.140415

    Article  Google Scholar 

  47. A. Baldan, Progress in Ostwald Ripening Theories and Their Applications to the γ′-Precipitates in Nickel-Base Superalloys Part II: Nickel-Base Superalloys, J. Mater. Sci., 2002, 37, p 2379–2405. https://doi.org/10.1023/A:1015408116016

    Article  CAS  Google Scholar 

  48. C. Mateo-Mateo, C. Vázquez-Vázquez, M. Pérez-Lorenzo, V. Salgueiriño and M.A. Correa-Duarte, Ostwald Ripening of Platinum Nanoparticles Confined in a Carbon Nanotube/Silica-Templated Cylindrical Space, J. Nanomater., 2012 https://doi.org/10.1155/2012/404159

    Article  Google Scholar 

  49. W.O. Soboyejo, R.J. Lederich and S.M.L. Sastry, Mechanical Behavior of Damage Tolerant TiB Whisker-Reinforced In Situ Titanium Matrix Composites, Acta Metall. Mater., 1994, 42, p 2579–2591. https://doi.org/10.1016/0956-7151(94)90199-6

    Article  CAS  Google Scholar 

  50. T. Chen, S. Koyama and L. Yu, Improvement of Mechanical, Tribological, and Fricative Reduction Properties of Pure Titanium by Boriding, Appl. Sci., 2021 https://doi.org/10.3390/app11114862

    Article  Google Scholar 

  51. S. Liu and Y.C. Shin, Additive Manufacturing of Ti6Al4V Alloy: A Review, Mater. Des., 2019 https://doi.org/10.1016/j.matdes.2018.107552

    Article  Google Scholar 

  52. R.A. Gaisin, V.M. Imayev, R.M. Imayev and E.R. Gaisina, Microstructure and Hot Deformation Behavior of Two-Phase Boron-Modified Titanium Alloy VT8, Phys. Met. Metallogr., 2013, 114, p 339–347. https://doi.org/10.1134/S0031918X13040042

    Article  Google Scholar 

  53. R.A. Gaisin, V.M. Imayev and R.M. Imayev, Microstructure and Mechanical Properties of a Near-α-Titanium-Alloy/TiB Composite Prepared in situ by Casting and Subjected to Deformation and Heat Treatment, Phys. Met. Metallogr., 2018, 119, p 907–916. https://doi.org/10.1134/S0031918X18090041

    Article  CAS  Google Scholar 

  54. J. Tiley, T. Searles, E. Lee, S. Kar, R. Banerjee, J.C. Russ and H.L. Fraser, Quantification of Microstructural Features in α/β Titanium Alloys, Mater. Sci. Eng. A., 2004, 372, p 191–198. https://doi.org/10.1016/J.MSEA.2003.12.008

    Article  Google Scholar 

  55. Z.C. Cordero, B.E. Knight and C.A. Schuh, Six Decades of the Hall-Petch Effect – a Survey of Grain-Size Strengthening Studies on Pure Metals, Int. Mater. Rev., 2016 https://doi.org/10.1080/09506608.2016.1191808

    Article  Google Scholar 

  56. B.K.C. Ganesh, N. Ramanaih and P.V. Chandrasekhar Rao, Dry Sliding Wear Behavior of Ti-6Al-4V Implant Alloy Subjected to Various Surface Treatments, Trans. Indian Inst. Met., 2012, 65, p 425–434. https://doi.org/10.1007/s12666-012-0147-4

    Article  Google Scholar 

  57. T.M.T. Godfrey, P.S. Goodwin and C.M. Ward-Close, Titanium Particulate Metal Matrix Composites: Reinforcement, Production Methods, and Mechanical Properties, Adv. Eng. Mater., 2000 https://doi.org/10.1002/(sici)1527-2648(200003)2:3%3c85::aid-adem85%3e3.0.co;2-u

    Article  Google Scholar 

  58. W. Xiang, M. Xuliang, L. Xinlin, D. Lihua and W. Mingjia, Effect of Boron Addition on Microstructure and Mechanical Properties of TiC/Ti6Al4V Composites, Mater. Des., 2012, 36, p 41–46. https://doi.org/10.1016/j.matdes.2011.10.040

    Article  CAS  Google Scholar 

  59. J. Yang, W. Gu, L.M. Pan, K. Song, X. Chen and T. Qiu, Friction and Wear Properties of In Situ (TiB2+TiC)/Ti3SiC2 Composites, Wear, 2011, 271, p 2940–2946. https://doi.org/10.1016/j.wear.2011.06.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the use of National facility of Texture and OIM (A DST-IRPHA project) and Nanoindentation lab of IIT Bombay. The corresponding author would like to acknowledge VRDE Ahmednagar for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Hiwarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P.K., Warghane, S., Nichul, U. et al. Heat Treatment Behaviour of SLM-Built Titanium Matrix Composite: Microstructure and Tribological Performance. J. of Materi Eng and Perform 31, 9586–9595 (2022). https://doi.org/10.1007/s11665-022-06981-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06981-4

Keywords

Navigation