Skip to main content
Log in

Stress Relaxation Tests: Modeling Issues and Applications in Magnesium Alloys and Composites

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The stress relaxation (SR) test during plastic deformation is a useful technique for studying deformation processes. SR tests were performed during plastic deformation of pure magnesium, magnesium alloys and magnesium alloys-based composites over a wide temperature interval from room temperature up to 300 °C. Various theoretical approaches were applied for the estimation of characteristic parameters of thermally activated processes and finding of stress components. The aim of this study was to reveal the main features of deformation processes in hexagonal close-packed magnesium alloys and composites. The role of solute atoms in dynamic strain aging phenomena is discussed. In ultrafine-grained magnesium, grain boundary sliding during the stress relaxation tests was observed. The paper analyzes extensive set of results obtained by authors on cast and processed magnesium materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18.
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. P. Feltham, Stress Relaxation in Alpha-Iron at Low Temperatures, Phil. Mag., 1961, 6, p 817. https://doi.org/10.1080/14786436108243341

    Article  Google Scholar 

  2. V.I. Dotsentko, Stress Relaxation in Crystals, Phys. stat. sol. (b), 1970, 93, p 11. https://doi.org/10.1002/pssb.2220930102

    Article  Google Scholar 

  3. E. Aifantis and W.W. Gerberich, A Theoretical Review of Stress Relaxation Testing Materials Science and Engineering, Mater. Sci. Eng., 1975, 21, p 107–113. https://doi.org/10.1016/0025-5416(75)90204-9

    Article  Google Scholar 

  4. M. Grosbras, E. Dedieu and M. Cahoreau, Some Considerations About Stress Relaxation Experiments, Phys. stat. sol(, 1977, 42, p 449–457. https://doi.org/10.1002/pssa.2210420204

    Article  CAS  Google Scholar 

  5. K. Hariharan and J. Jain, Stress Relaxation Test: Issues in Modelling and Interpretation, Manufact. Lett., 2020, 26, p 64–68. https://doi.org/10.1016/j.mfglet.2020.10.003

    Article  Google Scholar 

  6. H. Conrad, Thermally Activated Deformation of Metals, JOM, 1964, 16, p 582–588. https://doi.org/10.1007/BF03378292

    Article  CAS  Google Scholar 

  7. P. Feltham, Stress Relaxation in Magnesium at Low Temperatures, Phys. stat. sol. (b), 1963, 3, p 1340–1346. https://doi.org/10.1002/pssb.19630030805

    Article  Google Scholar 

  8. G.A. Sargent, Stress Relaxation and Thermal Activation in Niobium, Acta Metall., 1965, 13, p 663–671. https://doi.org/10.1016/0001-6160(65)90129-X

    Article  CAS  Google Scholar 

  9. I. Lehner, S. Chiang and D.I. Kohlstedt, Load Relaxation Studies of Four Alkali Halides, Acta Metall., 1979, 27, p 1187–1196. https://doi.org/10.1016/0001-6160(79)90136-6

    Article  Google Scholar 

  10. A.S. Krausz and K. Krausz, Unified Constitutive laws of Plastic Deformation, Academic Press, San Diego, 1996.

    Google Scholar 

  11. J.C.M. Li, Dislocation Dynamics in Deformation and Recovery, Canad. J. Appl. Phys., 1967, 45, p 493–509. https://doi.org/10.1139/p67-043

    Article  CAS  Google Scholar 

  12. J.C.M. Li, In: Dislocation Dynamics (Eds. A.R. Rosenfeld, G.T. Hahn, A.L. Bement, R.I. Jaffee) McGraw-Hill, p. 87, New York 1969

  13. E.W. Hart, A Phenomenological Theory for Plastic Deformation of Polycrystalline Metals, Acta Metall., 1970, 18, p 599–610. https://doi.org/10.1016/0001-6160(70)90089-1

    Article  CAS  Google Scholar 

  14. E.W. Hart, C.Y. Li, H. Yamaha, G.L. Wize In: Constitutive equations in Plasticity (Ed. A.S. Argon) MIY Press, Cambridge MA, 1975, p. 149

  15. M.A. Fortes and M.E. Rosa, The Form of a Constitutive Equation of Plastic Deformation Compatible with Stress Relaxation Data, Acta Metall., 1984, 32, p 663–670. https://doi.org/10.1016/0001-6160(84)90140-8

    Article  CAS  Google Scholar 

  16. R.W. Rohde, W.B. Jones and J.C. Swearengen, Deformation Modeling of Aluminum: Stress Relaxation, Transient Behavior, and Search for Microstructural Correlations, Acta Metall., 1981, 29, p 41–52. https://doi.org/10.1016/0001-6160(81)90085-7

    Article  CAS  Google Scholar 

  17. E. Qrowan, Problems of Plastic Gliding, Proc. Phys. Soc., 1940, 52, p 8–22.

    Article  Google Scholar 

  18. G. Schoeck, A. Seeger, A. Conf. Ded. Solids, Phys. Soc. London 1955, 340

  19. H. Wolf, Die Aktivierungsenergie für die Quergleitung aufgespaltener Schraubenversetzungen, Z. Naturforschung, 1960, 15, p 180–193.

    Article  Google Scholar 

  20. R.Y. Kuznetsov and V.A. Pavlov, Time Course of Plastic Stress Relaxation Fiz, Metal. Metaloved, 1968, 25, p 934.

    CAS  Google Scholar 

  21. U.F. Kocks, A.S. Argon and M.F. Ashby, Introduction, Prog. Mater. Sci., 1975, 19, p 1.

    Article  Google Scholar 

  22. J. Friedel, Dislocations, Pergamon Press, Oxford, 1964, p 315

    Google Scholar 

  23. K. Ono, Temperature Dependence of Dispersed Barrier Hardening, Appl. Phys., 1968, 39, p 1803–1806. https://doi.org/10.1063/1.1656434

    Article  Google Scholar 

  24. F.F. Lavrentev and Y.A. Pokhil, Relation of Dislocation Density in Different Slip Systems to Work-Hardening Parameters for Magnesium Crystals, Mater. Sci. Eng., 1975, 18, p 261–270. https://doi.org/10.1016/0025-5416(75)90179-2

    Article  CAS  Google Scholar 

  25. R. de Batist and A. Callens, On the Analysis of Stress Relaxation Experiments, Phys. Stat. Sol. (a), 1974, 21, p 591–595. https://doi.org/10.1002/pssa.2210210223

    Article  Google Scholar 

  26. G.B. Gibbs, Creep and Stress Relaxation Studies with Polycrystalline Magnesium, Phil. Mag., 1966, 13, p 317–329. https://doi.org/10.1080/14786436608212610

    Article  CAS  Google Scholar 

  27. S.R. MacEwan, O.A. Kupcis and B. Ramaswami, An Investigation of an Incremental Unloading Technique for Estimating Internal Stress, Scripta Metall., 1969, 3, p 441–448. https://doi.org/10.1016/0036-9748(69)90128-8

    Article  Google Scholar 

  28. P.M. Kelly and J.M. Round, Stress Relaxation and the Use of the Johnston-Gilman Equation in the Analysis of Thermally Activated Flow in A-Iron, Scripta Metall., 1968, 3, p 85–92. https://doi.org/10.1016/0036-9748(69)90206-3

    Article  Google Scholar 

  29. W.G. Johnston and J.J. Gilman, Dislocation Velocities, Dislocation Densities and Plastic Flow in Lithium Fluorid Crystals, J. Appl. Phys., 1959, 30, p 129–144. https://doi.org/10.1063/1.1735121

    Article  CAS  Google Scholar 

  30. A.A. Urusovskaya, G.G. Knab and Yu.Z. Estrin, Comparison of Dislocation Mobility in Lif Measured by Direct and Indirect Methods, Phys. Stat. Sol (a), 1976, 36, p 397–402. https://doi.org/10.1002/pssa.2210360143

    Article  CAS  Google Scholar 

  31. Z. Trojanová and P. Lukáč, Step Wise Stress Relaxation in Zn-Al Single Crystals, Phys. Stat. Sol. (a), 1992, 130, p K35-39. https://doi.org/10.1002/pssa.2211300136

    Article  Google Scholar 

  32. M. Fellner, M. Hamerský and E. Pink, A Comparison of the Portevin-Le Chatelier Effect in Constant-Strain-Rate and Constant-Stress-Rate Tests, Mater. Sci. Eng. A, 1991, 137, p 157–161. https://doi.org/10.1016/0921-5093(91)90330-P

    Article  Google Scholar 

  33. T.W. Clyne and P.J. Whithers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, UK, 1993.

    Book  Google Scholar 

  34. R.M. Aikin Jr. and L. Christodoulou, The Role of Equiaxed Particles on the Yield Stress of Composites, Scr. Metall. Mater., 1991, 25, p 9–14. https://doi.org/10.1016/0956-716X(91)90345-2

    Article  CAS  Google Scholar 

  35. D. Caillard, J-L. Martin, Thermally activated mechanisms in crystal plasticity, vol. 8, Pergamon, 2003.

  36. U.F. Kocks, Realistic constitutive relations for metal plasticity. Mater. Sci. Eng. 317, 2001, 181-187. PII: S 0 9 2 1 - 5 0 9 3 ( 0 1 ) 0 1 1 7 4 - 1

  37. A.G. Evans and R.D. Rawlings, The Thermally Activated Deformation of Cystalline Materials, Phys. Stat. Sol., 1969, 34, p 9–31. https://doi.org/10.1002/pssb.19690340102

    Article  CAS  Google Scholar 

  38. P. Lukáč, Solid Solution Hardening in Mg-Cd Single Crystals, Phys. Stat. Sol. (a), 1992, 131, p 377–390. https://doi.org/10.1002/pssa.2211310212

    Article  Google Scholar 

  39. P. Lukáč, Thermally Activated Deformation Mechanisms in HCP Metals, J. Sci. Ind. Res., 1972, 32, p 569.

    Google Scholar 

  40. R. v. Mises, Mechanik der festen Körper im plastisch- deformable state. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913, 582–592.

  41. A. Couret and D. Caillard, An In Situ Study of Prismatic Glide in Magnesium—I the Rate Controlling Mechanism, Acta Metall., 1985, 33, p 1447–1454. https://doi.org/10.1016/0001-6160(85)90045-8

    Article  CAS  Google Scholar 

  42. A. Couret and D. Caillard, An In Situ Study of Prismatic Glide in Magnesium—II Microscopic Activation Parameters, Acta Metall., 1985, 33, p 1455–1462. https://doi.org/10.1016/0001-6160(85)90046-X

    Article  CAS  Google Scholar 

  43. A. Ahmadieh, J. Mitchell and J.E. Dorn, Lithium Alloying and Dislocation Mechanisms for Prismatic Slip in Magnesium, Trans. AIME, 1965, 233, p 1130.

    CAS  Google Scholar 

  44. J. Koike and R. Ohyama, Geometrical Criterion for the Activation of Prismatic Slip in AZ61 Mg Alloy Sheets Deformed at Room Temperature, Acta Mater., 2005, 53, p 1963–1972. https://doi.org/10.1016/j.actamat.2005.01.008

    Article  CAS  Google Scholar 

  45. D. Buey and M. Ghazisaeidi, Atomistic Simulation of <c+a> Screw Dislocation Cross Slip in Mg, Scripta Mater., 2016, 117, p 51–54. https://doi.org/10.1016/j.scriptamat.2016.02.001

    Article  CAS  Google Scholar 

  46. S. Ando and H. Tonda, Non-Basal Slip in Magnesium-Lithium Alloy Single Crystals, Mater. Trans. JIM, 2000, 41, p 1188–1191. https://doi.org/10.2320/matertrans1989.41.1188

    Article  CAS  Google Scholar 

  47. H. Tonda and S. Ando, Effect of Temperature and Shear Direction on Yield Stress by 1122 <1123> Slip in HCP Metals, Metall. Mater. Trans. A, 2002, 33, p 831–836. https://doi.org/10.1007/s11661-002-1015-3

    Article  Google Scholar 

  48. R. Ahmad, Z. Wu and W.A. Curtin, Analysis of Double Cross Slip of Pyramidal I <c+a> Dislocations and Implications for Ductility in Mg Alloys, Acta Mater., 2020, 183, p 228–241. https://doi.org/10.1016/j.actamat.2019.10.053

    Article  CAS  Google Scholar 

  49. Z. Trojanová, P. Palček, P. Lukáč, M. Chalupová: Internal friction in magnesium alloys and magnesium alloys based composites. Magnesium Alloys, Intech, Rijeka 2017, ISBN 978-953-51-4808-1

  50. Z. Trojanová, P. Lukáč, B. Weidenfeller and W. Riehemann, Mechanical Damping in Magnesium Prepared by Ball Milling in Medium Temperature Region, Kovove Mater., 2008, 46, p 249–256.

    Google Scholar 

  51. Z. Trojanová and P. Lukáč, Physical Aspects of Plastic Deformation in Mg-Al Alloys with Sr and Ca, Inter. J. of Mater. Research, 2009, 100, p 270–276.

    Article  Google Scholar 

  52. W.J. McG Tegart, Activation Energies for High Temperature Creep of Polycrystalline Magnesium, Acta Metall., 1961, 9, p 614–617. https://doi.org/10.1016/0001-6160(61)90166-3

    Article  Google Scholar 

  53. P. Eisenlohr, W. Blum and K. Milička, Dislocation Glide Velocity in Creep of Mg Alloys Derived from Dip Tests, Mater. Sci. Eng. A, 2009, 510–511, p 393–397.

    Article  Google Scholar 

  54. S.S. Vagarali and T.G. Langdon, Deformation Mechanisms in h.c.p. Metals at Elevated Temperatures—I Creep Behavior of Magnesium, Acta metall., 1982, 29, p 1969–1962. https://doi.org/10.1016/0001-6160(81)90034-1

    Article  Google Scholar 

  55. S.S. Vagarali and T.G. Langdon, Deformation Mechanisms in h.c.p. Metals at Elevated Temperatures—II. Creep Behavior of a Mg-0.8% Al Solid Solution Alloy, Acta metall., 1982, 30, p 1157–1170. https://doi.org/10.1016/0001-6160(82)90009-8

    Article  CAS  Google Scholar 

  56. K. Máthis, J. Čapek, Z. Zdražilová and Z. Trojanová, Investigation of Tension–Compression Asymmetry of Magnesium by Use of the Acoustic Emission Technique, Mater. Sci. Eng., A, 2011, 528, p 5904–5907. https://doi.org/10.1016/j.msea.2011.03.114

    Article  CAS  Google Scholar 

  57. P. Dobroň, J. Bohlen, F. Chmelík, P. Lukáč, D. Letzig and K.U. Kainer, Acoustic Emission During Stress Relaxation of Pure Magnesium and AZ Magnesium Alloys, Mater. Sci. Eng. A, 2007, 462, p 307–310. https://doi.org/10.1016/j.msea.2005.12.111

    Article  CAS  Google Scholar 

  58. X. Liu, J. Chen and X. Liu, Effect of Twin Boundary -Dislocation and Twin Boundary -Solute Atom Interaction on Detwinning of Mg-2Gd-2Y-0.3Zr Alloy, J. Alloys. Compd., 2019, 770, p 483–89. https://doi.org/10.1016/j.jallcom.2018.08.171

    Article  CAS  Google Scholar 

  59. M.S. Hooshmand and M. Ghazisaeidi, Solute/Twin Boundary Interaction as a New Atomic-Scale Mechanism for Dynamic Strain Aging, Acta Mater., 2020, 188, p 711–719. https://doi.org/10.1016/j.actamat.2020.01.066

    Article  CAS  Google Scholar 

  60. Z. Pei, K. Li, J.-F. Nie and J.R. Morris, First Principle Study of the Solute Segregation in Twin Boundaries in Mg and Possible Descriptors for Mechanical Properties, Mater. Design, 2019, 165, 107574. https://doi.org/10.1016/j.matdes.2018.107574

    Article  CAS  Google Scholar 

  61. P. Yi and M.L. Falk, Thermally Activated Twin Thinckening and Solute Softening in Magnesium Alloys-A Molecular Simulation Study, Scripta Mater., 2019, 162, p 195–199. https://doi.org/10.1016/j.scriptamat.2018.11.021

    Article  CAS  Google Scholar 

  62. H. Zhu, S. Liu, Z. Liu and D. Li, Tailoring the Stability, Comput. Mater. Sci., 2018, 152, p 113–117.

    Article  CAS  Google Scholar 

  63. Y.V.R.K. Sastry and R.V. Armstrong, Effect of Grain Size on the Thermal Activation Strain Rate Analysis in HCP Metals, J. Sci. Ind. Res., 1972, 32, p 314–316.

    Google Scholar 

  64. F.F. Lavrentev, The Type of Dislocation Interaction as the Factor Determining Work Hardening, Mater. Sci. Eng., 1980, 46, p 191–208. https://doi.org/10.1016/0025-5416(80)90175-5

    Article  CAS  Google Scholar 

  65. Z. Trojanová, C.H. Cáceres, P. Lukáč and L. Čížek, Serrated Flow in Az91 Magnesium Alloy in Tension and Compression, Kovove Mater., 2008, 46, p 243–248.

    Google Scholar 

  66. L.P. Kubin and Y. Estrin, Evolution of Dislocation Densities and the Critical Condition for the Portevin - Le Châtelier Effect, Acta Metall. Mater., 1990, 38, p 697–708. https://doi.org/10.1016/0956-7151(90)90021-8

    Article  CAS  Google Scholar 

  67. F. Chmelík, Z. Trojanová, Z. Převorovský and P. Lukáč, The Portevin-Le Châtelier Effect in Al-2.92%Mg-0.38%Mn and Linear Location of Acoustic Emission, Mater. Sci. Engn., 1993, A164, p 260–265. https://doi.org/10.1016/0921-5093(93)90674-4

    Article  Google Scholar 

  68. J. Balík and P. Lukáč, Portevin-LeChâtelier Instabilities in Al-3Mg Conditioned by Strain Rate and Strain, Acta Metall. Mater., 1993, 41, p 1447–1454. https://doi.org/10.1016/0956-7151(93)90253-O

    Article  Google Scholar 

  69. N. Louat, On the Theory of the Portevin-Le Châtelier Effect, Scr. Metall., 1981, 15, p 1167–1170. https://doi.org/10.1016/0036-9748(81)90290-8

    Article  CAS  Google Scholar 

  70. J. Friedel, Dislocations, Pergamon, Oxford, 1964.

    Google Scholar 

  71. M.S. Mohebbi, A. Akbarzadeh, Y.-O. Yoon and S.-K. Kim, Stress Relaxation and Flow Behavior Of Ultra-Fine Grained AA 1050, Mechanics of Materials, 2015, 89, p 23–34. https://doi.org/10.1016/j.mechmat.2015.06.001

    Article  Google Scholar 

  72. H. Luethy, R.A. White and O.D. Sherby, Grain Boundary Sliding and Deformation Mechanism Maps, Mater. Sci. Eng., 1979, 39(2), p 211–216. https://doi.org/10.1016/0025-5416(79)90060-0

    Article  CAS  Google Scholar 

  73. H.J. Frost and M.F. Ashby, Deformation-mechanism Maps, Pergamon Press, Oxford, UK, 1982, p 44

    Google Scholar 

  74. A. Varma, A. Gokhale, H. Krishnaswamy, D.K. Banerjee and J. Jain, Grain Boundary Sliding and Non-Constancy Strain During Stress Relaxation of Pure Mg, Mater Sci Eng. A, 2021, 817, 141349. https://doi.org/10.1016/j.msea.2021.141349

    Article  CAS  Google Scholar 

  75. A. Dlouhý, P. Lukáč and Z. Trojanová, Stress Relaxation, Kovove Mater., 1984, 22, p 688–694.

    Google Scholar 

  76. T. Suzuki, S. Takeuchi, H. Yoshinaga, Dislocation Dynamics and Plasticity. Springer Series in Materials Science 12, Springer-Verlag, Berlin-Heidelberg, 1991.

  77. K. Hariharan, J. Jain and M.G. Lee, Modelling Transient Behavior During Stress Relaxation, J. Phys. Conf. Series, 2018, 1063, 012016. https://doi.org/10.1088/1742-6596/1063/1/012016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These results were partially achieved with the use of support from the Ministry of Industry and Trade of the Czech Republic in the form of institutional funding.

Author information

Authors and Affiliations

Authors

Contributions

ZT contributed to supervision, investigation, conceptualization, writing—original draft, methodology, writing—review and editing. ZD contributed to investigation, methodology, review and editing. PL contributed to conceptualization, methodology, review and editing. JD ugan contributed to methodology, writing—review and editing.

Corresponding author

Correspondence to Zuzanka Trojanová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Magnesium. The issue was organized by Prof. C. (Ravi) Ravindran, Dr. Raja Roy, Mr. Payam Emadi, and Mr. Bernoulli Andilab, Ryerson University.

Appendices

Appendix

See Table 4

Table 4 Nominal composition (in wt.%) of the alloys studied

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trojanová, Z., Drozd, Z., Lukáč, P. et al. Stress Relaxation Tests: Modeling Issues and Applications in Magnesium Alloys and Composites. J. of Materi Eng and Perform 32, 2766–2783 (2023). https://doi.org/10.1007/s11665-022-06951-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06951-w

Keywords

Navigation