Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of ER70S-6 Alloy Cladding on Aluminum Using a Cold Metal Transfer Process

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cold metal transfer (CMT) process is a type of gas metal arc welding with low heat input. This work studies microstructural, mechanical and tribological properties of ER70S-6 cladding layer on AA 6061-T6 substrate using CMT technology. Optimum process parameters were identified through visual examination. Further study was carried out with the optimized parameters. The microstructures at the substrate–cladding interface were observed using optical and field emission electron microscopy. The microstructural observations revealed the formation of equiaxed, columnar and dendritic grain structures due to directional solidification. In general, the cladding layer was free of cracks and porosity. The maximum hardness of 235 HV was observed in the cladding layer compared to 88 HV in the substrate. For the chosen experimental conditions, the minimum mean wear depth and coefficient of friction of 37  µm and 0.23, respectively, were observed in the cladded sample; corresponding values for substrate were 75  µm and 0.29. Improved equivalent yield strength of 300 MPa for the cladded sample was observed, compared to 236 MPa in the as-received sample. The average bond shear strength between the cladding layer and substrate was found to be 74 MPa, which is indicative of a good metallurgical bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig. 8
Fig 9
Fig 10
Fig 11
Fig 12
Fig 13
Fig 14
Fig 15
Fig. 16

Similar content being viewed by others

Reference

  1. J. Hu, W. Zhang, D. Fu, J. Teng and H. Zhang, Improvement of the Mechanical Properties of Al–Mg–Si Alloys with Nano-Scale Precipitates After Repetitive Continuous Extrusion Forming and T8 Tempering, J. Mater. Res. Technol., 2019, 8(6), p 5950–5960. https://doi.org/10.1016/j.jmrt.2019.09.070

    Article  Google Scholar 

  2. S.R. Bakshi, V. Singh, K. Balani, D.G. McCartney, S. Seal and A. Agarwal, Carbon Nanotube Reinforced Aluminum Composite Coating Via Cold Spraying, Surf. Coat. Technol., 2008, 202, p 5162. https://doi.org/10.1016/j.surfcoat.2008.05.042

    Article  Google Scholar 

  3. H. Mindivan, Wear Behavior of Plasma and HVOF Sprayed WC-12CO + 6% ETFE Coatings on Aa2024-T6 Aluminum Alloy, Surf. Coat. Technol., 2010, 204, p 1870. https://doi.org/10.1016/j.surfcoat.2009.10.050

    Article  Google Scholar 

  4. T. Laha, A. Agarwal, T. McKechnie, K. Rea and S. Seal, Synthesis of Bulk Nanostructured Aluminum Alloy Component through Vacuum Plasma Spray Technique, Acta. Mater., 2005, 53, p 5429. https://doi.org/10.1016/j.actamat.2005.08.027

    Article  Google Scholar 

  5. G.P. Rajeev, M. Kamaraj and R.S. Bakshi, Comparison of Microstructure, Dilution and wear Behavior of Stellite 21 hardfacing on H13 Steel Using Cold Metal Transfer and Plasma Transferred arc Welding Processes, Surf. Coating. Technol., 2019, 375, p 383–394. https://doi.org/10.1016/j.surfcoat.2019.07.019

    Article  Google Scholar 

  6. N. Murugan and R.S. Parmar, Effects of MIG Process Parameters on the Geometry of the Bead in the Automatic Surfacing of Stainless Steel, J. Mater. Proc. Technol., 1994, 41, p 381. https://doi.org/10.1016/0924-0136(94)90003-5

    Article  Google Scholar 

  7. D. Deng, R. Chen, Q. Sun and X. Li, Microstructural Study of 17–4PH Stainless Steel after Plasma-Transferred Arc Welding, Materials, 2015, 8, p 424–434. https://doi.org/10.3390/ma8020424

    Article  Google Scholar 

  8. K. Gurumoorthy, M. Kamaraj, K.P. Rao and S. Venugopal, Microstructure and wear Characteristics of Nickel Based Hardfacing Alloys Deposited by Plasma Transferred arc Welding, J. Mater. Sci. Technol., 2006, 22, p 975–980. https://doi.org/10.1179/174328406X100734

    Article  Google Scholar 

  9. N.P. Kumar, S.A. Vendan and N.S. Shanmugam, Investigations on the Parametric Effects of Cold Metal Transfer Process on the Microstructural Aspects in AA6061, J. Alloy. Compd., 2016, 658, p 255–264. https://doi.org/10.1016/j.jallcom.2015.10.166

    Article  Google Scholar 

  10. A. Elrefaey, Effectiveness of Cold Metal Transfer Process for Welding 7075 Aluminum Alloys, Sci. Technol. Weld. Join., 2015, 20(4), p 280–285. https://doi.org/10.1179/1362171815Y.0000000017

    Article  Google Scholar 

  11. G. Lorenzin and G. Rutili, The Innovative Use of Low Heat Input in Welding: Experiences on ‘Cladding’ and Brazing Using the CMT Process, Weld. Int., 2009, 23(8), p 622–632. https://doi.org/10.1080/09507110802543252

    Article  Google Scholar 

  12. C.G. Pickin, S.W. Williams and M. Lunt, Characterization of the Cold Metal Transfer (CMT) Process and its Application for Low Dilution Cladding, J. Mater. Proc. Technol., 2011, 211, p 496. https://doi.org/10.1016/j.jmatprotec.2010.11.005

    Article  Google Scholar 

  13. S. Selvi, A. Vishvaksenan and E. Rajasekar, Cold Metal Transfer (CMT) Technology-An Overview, Def. Technol., 2018, 14(1), p 28–44. https://doi.org/10.1016/j.dt.2017.08.002

    Article  Google Scholar 

  14. J. Feng, H. Zhang and P. He, The CMT Short-Circuiting Metal Transfer Process and its Use in Thin Aluminum Sheets Welding, Mater. Des., 2009, 30, p 1850. https://doi.org/10.1016/j.matdes.2008.07.015

    Article  Google Scholar 

  15. R. Ahmad and M.A. Bakar, Effect of a Post-Weld Heat Treatment on the Mechanical and Microstructure Properties of AA6061 Joints Welded by the Gas Metal arc Welding Cold Metal Transfer Method, Mater. Des., 2011, 32, p 5120. https://doi.org/10.1016/j.matdes.2011.06.007

    Article  Google Scholar 

  16. H.T. Zhang, J.C. Feng, P. He, B.B. Zhang, J.M. Chen and L. Wang, The arc Characteristics and Metal Transfer Behaviour of Cold Metal Transfer and Its Use in Joining Aluminum to Zinc-Coated Steel, Mater. Sci. Eng. A, 2009, 499, p 111–113. https://doi.org/10.1016/j.msea.2007.11.124

    Article  Google Scholar 

  17. J. Shang, K. Wang, Q. Zhou, D. Zhang, J. Huang and G. Li, Microstructure Characteristics and Mechanical Properties of Cold Metal Transfer Welding MG/AL Dissimilar Metals, Mater. Des., 2012, 34, p 559. https://doi.org/10.1016/j.matdes.2011.05.008

    Article  Google Scholar 

  18. R. Cao, J.H. Sun and J.H. Chen, Mechanisms of Joining Aluminum A6061–T6 and Titanium Ti–6AI–4V Alloys by Cold Metal Transfer Technology, Sci. Technol. Weld. Join., 2013, 18, p 425. https://doi.org/10.1179/1362171813Y.0000000118

    Article  Google Scholar 

  19. G.P. Rajeev, M. Kamaraj and R.S. Bakshi, Hardfacing of AISI H13 Tool Steel With Stellite 21 Alloy Using Cold Metal Transfer Welding Process, Surf. Coating. Technol., 2017, 326, p 63–71. https://doi.org/10.1016/j.surfcoat.2017.07.050

    Article  Google Scholar 

  20. P. Varghese, E. Vetrivendan, M.K. Dash, S. Ningshen, M. Kamaraj and U.K. Mudali, Weld Overlay Coating of Inconel 617M on Type 316 L Stainless Steel by Cold Metal Transfer Process, Surf. Coating. Technol., 2019, 357, p 1004–1013. https://doi.org/10.1016/j.surfcoat.2018.10.073

    Article  Google Scholar 

  21. O.T. Ola and F.E. Doern, A Study of Cold Metal Transfer Clads in Nickel-Base Inconel 718 Superalloy, Mater. Des., 2014, 57, p 51–59. https://doi.org/10.1016/j.matdes.2013.12.060

    Article  Google Scholar 

  22. P. Luchtenberg, P.T. Campos, P. Soares, C.A.H. Laurindo, O. Maranho and R.D. Torres, Effect of Welding Energy on the Corrosion and Tribological Properties of Duplex Stainless-Steel Weld Overlay Deposited by GMAW/CMT Process, Surf. Coating. Technol., 2019, 375, p 688–693. https://doi.org/10.1016/j.surfcoat.2019.07.072

    Article  Google Scholar 

  23. X. Tang, S. Zhang, X. Cui, C. Zhang, Y. Liu and J. Zhang, Tribological and Cavitation Erosion Behaviors of Nickel-Based and Iron-Based Coatings Deposited on AISI 304 Stainless Steel by Cold Metal Transfer, J. Mater. Sci. Technol., 2020, 9, p 6665–6681. https://doi.org/10.1016/j.jmrt.2020.04.064

    Article  Google Scholar 

  24. A. Sova, S. Grigoriev, A. Okunkova and I. Smurov, Cold Spray Deposition of 316l Stainless Steel Coatings on Aluminum Surface with Following Laser Post-Treatment, Surf. Coating. Technol., 2013, 235, p 283–289. https://doi.org/10.1016/j.surfcoat.2013.07.052

    Article  Google Scholar 

  25. M. Villa, S. Dosta and J.M. Guilemany, Optimization of 316L Stainless Steel Coatings on Light Alloys Using Cold Gas Spray, Surf. Coating. Technol., 2013, 235, p 220–225. https://doi.org/10.1016/j.surfcoat.2013.07.036

    Article  Google Scholar 

  26. J. Zhou, K. Ma, C.X. Li, M. Yasir, X.T. Luo and C.J. Li, Microstructures of Aluminum Surfaces Reinforced with 316L Stainless Steel Particles Via High-Speed Particle Injection and the Resulting Double Strengthening Mechanism, Surf. Coating. Technol., 2020, 385, 125380. https://doi.org/10.1016/j.surfcoat.2020.125380

    Article  Google Scholar 

  27. A. Ermakova, A. Mehmanparast, S. Ganguly, J. Razavi and F. Berto, Fatigue Crack Growth Behaviour of Wire and arc Additively Manufactured ER70S-6 Low Carbon Steel Components, Int J Fract., 2021 https://doi.org/10.1007/s10704-021-00545-8

    Article  Google Scholar 

  28. https://www.esabindia.com/in/en/products/filler-metals/mig-mag-wires-gmaw/mild-steel-wires/esab-mw1.cfm, accessed on February 14, 2022.

  29. G.P. Rajeev, M. Kamaraj and R.S. Bakshi, Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique, JOM, 2014, 66, p 1061–1067. https://doi.org/10.1007/s11837-014-0970-7

    Article  Google Scholar 

  30. Y. Zhou and Q. Lin, Wetting of Galvanized Steel by Al 4043 Alloys in the First Cycle of CMT Process, J. Alloy. Compd., 2014, 589, p 307–313. https://doi.org/10.1016/j.jallcom.2013.11.177

    Article  Google Scholar 

  31. A. Evangeline and P. Sathiya, Cold Metal arc Transfer (CMT) Metal Deposition of Inconel 625 Superalloy on 316l Austenitic Stainless Steel: Microstructural Evaluation, Corrosion and Wear Resistance Properties, Mater. Res. Exp., 2019, 6, 066516. https://doi.org/10.1088/2053-1591/ab0a10

    Article  Google Scholar 

  32. B. Zhang, C. Wang, Z. Wang, L. Zhang and Q. Gao, Microstructure and Properties of Al Alloy ER5183 Deposited by Variable Polarity Cold Metal Transfer, J. Mater. Process. Technol., 2019, 267, p 167–176. https://doi.org/10.1016/j.jmatprotec.2018.12.011

    Article  Google Scholar 

  33. A.O.P. Chiareli, H.E. Huppert and M.G. Worster, Segregation and Flow during the Solidification of Alloys, J. of Cryst. Growth, 1994, 139(1–2), p 134–146. https://doi.org/10.1016/0022-0248(94)90038-8

    Article  Google Scholar 

  34. W. Liu, S. Liu, J. Ma and R. Kovacevic, Real-Time Monitoring of the Laser Hot-Wire Welding Process, Opt Laser Technol, 2014, 57, p 66–76. https://doi.org/10.1016/j.optlastec.2013.09.026

    Article  Google Scholar 

  35. T. Ron, G.K. Levy, O. Dolev, A. Leon, A. Shirizly and E. Aghion, Environmental Behavior of Low Carbon Steel Produced by a Wire arc Additive Manufacturing Process, Metals, 2019, 9(8), p 888. https://doi.org/10.3390/met9080888

    Article  Google Scholar 

  36. R.K. Mishra, H. Kumar, G. Harmain and S. Albert, Wear Performance of Ni-Cr-B-Si Hardface Coatings Fabricated by Cold Metal Transfer Welding, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2022, 236(3), p 1850–1860. https://doi.org/10.1177/09544062211023085

    Article  Google Scholar 

  37. H.Q. Sun, Y.N. Shi and M.X. Zhang, Wear Behaviour of AZ91D Magnesium Alloy with a Nanocrystalline Surface Layer, Surf. Coating. Technol, 2008, 202, p 2859–2864. https://doi.org/10.1016/j.surfcoat.2007.10.025

    Article  Google Scholar 

  38. J.K. Lancaster, The Influence of Substrate Hardness on the Formation and Endurance of Molybdenum Disulphide Films, Wear, 1967, 10, p 103–117. https://doi.org/10.1016/0043-1648(67)90082-8

    Article  Google Scholar 

  39. J. Pirso, M. Viljus and S. Letunovits, Sliding Wear of TiC–NiMo Cermets, Tribol. Int., 2004, 37, p 817–824. https://doi.org/10.1016/j.triboint.2004.04.009

    Article  Google Scholar 

  40. J. Pirso, M. Viljus, K. Juhani and S. Letunovits, Two-Body Dry Abrasive Wear of Cermets, Wear, 2009, 266, p 21–29. https://doi.org/10.1016/j.wear.2008.05.005

    Article  Google Scholar 

  41. M. Shanthi, C.Y.H. Lim and L. Lu, Effects of Grain Size on the Wear of Recycled AZ91 Mg, Tribol. Int., 2007, 40, p 335–338. https://doi.org/10.1016/j.triboint.2005.11.025

    Article  Google Scholar 

  42. M. Hadad, G. Marot, P. Demarecaux, D. Chicot, J. Lesage, L. Rohr and S. Siegmann, Adhesion Tests for Thermal Spray Coatings: Correlation of Bond Strength and Interfacial Toughness, Surf. Eng., 2007, 23(4), p 279–283. https://doi.org/10.1179/174329407X215159

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Central Instrumentation Facility of Indian Institute of Technology Guwahati for providing the testing facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday S. Dixit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Panda, B.N. & Dixit, U.S. Microstructure and Mechanical Properties of ER70S-6 Alloy Cladding on Aluminum Using a Cold Metal Transfer Process. J. of Materi Eng and Perform 31, 9385–9398 (2022). https://doi.org/10.1007/s11665-022-06937-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06937-8

Keywords

Navigation