Skip to main content
Log in

Effect of Crystal Orientation on the Corrosion Behavior of As-Cast Pure Aluminum Anodes in Air Batteries

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the effect of crystal orientation on the corrosion behavior of an as-cast pure aluminum anode (PAA) in alkaline solution was systematically investigated based on electrochemical measurements and quasi-in situ observations. The results show that PAA with different crystal orientations exhibits disparate electrochemical activities and corrosion behavior, which is attributed to the potential differences for each crystalline orientation. The (001) lattice plane with a lower surface energy and more homogeneous potential distribution shows a better corrosion resistance than other lattice planes. This work could provide a way to improve the corrosion performance of aluminum air batteries in alkaline electrolytes by controlling the crystal orientation of PAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.R. Egan, C.P. De Leon, R.J.K. Wood et al., Developments in Electrode Materials and Electrolytes for Aluminium–Air Batteries, J. Power Sour., 2013, 236, p 293–310.

    Article  CAS  Google Scholar 

  2. R. Buckingham, T. Asset and P. Atanassov, Aluminum-Air: a Batteries Review of Alloys Electrolytes and Design, J. Power Sour., 2021, 498, p 1–23.

    Article  Google Scholar 

  3. P. Goel, D. Dobhal and R.C. Sharma, Aluminum-Air Batteries: A Viability Review, J. Energy Storage, 2020, 28, p 1–12.

    Article  Google Scholar 

  4. T. Chen, Aluminum-air Battery: Revolutionary Breakthrough of EV Power, Vehicle Electric., 2014, 12, p 4–7. https://doi.org/10.13273/j.cnki.qcdq.2014.12.002

    Article  CAS  Google Scholar 

  5. F. Liu, Current Status and Problems of Aluminum-Air Power Battery Development, New Mater. Indus., 2013, 07, p 61–65.

    Google Scholar 

  6. S. Zhao and A. Li, Research Status and Application Prospects of Aluminum-Air Batteries, Power Technol., 2014, 38(10), p 1969–1971.

    CAS  Google Scholar 

  7. C. Gui, Future of Aluminium Air Fuel Cell, Ship Electric Technol., 2005, 05, p 39–41. https://doi.org/10.13632/j.meee.2005.05.012

    Google Scholar 

  8. K. Ju, C. Liu, C. Tang et al., Research Progress and Application Prospects of Aluminum-Air Batteries, Battery, 2009, 39(01), p 50–52.

    CAS  Google Scholar 

  9. W. Xu, X. Wang, S. Kan et al., Study of Aluminum Anodes for Aluminum-Air Batteries. Chinese J. Rare Metals., 1999, 05, p 366–369.

    Google Scholar 

  10. H. Shao Study of Al-Ga/In-Mg-Sn-Si anode materials for aluminum/air batteries. Henan University of Science and Technology (2013)

  11. W. Bao, H. Zeng and M. Xu, Thinking on the Development and Application of Aluminum Air Battery, Guangdong Chem., 2019, 24(46), p 68–75.

    Google Scholar 

  12. M.L. Doche, J.J. Rameaul and R. Durand, Electrochemical Behaviour of Aluminum in Concentrated NaOH Solutions, Corros. Sci., 1999, 41(4), p 805–826.

    Article  CAS  Google Scholar 

  13. K.C. Emregul and A.A. Aksut, The Behavior of Aluminum in Alkaline Media, Corros. Sci., 2000, 42(12), p 2051–2067.

    Article  CAS  Google Scholar 

  14. Y.-J. Cho, I.-J. Park, H.-J. Lee et al., Aluminum Anode for Aluminum-Air Battery—Part I: Influence of Aluminum Purity, J. Power Sour., 2015, 277, p 370–378.

    Article  CAS  Google Scholar 

  15. L. Liu, Y. Jia, J. Jiang et al., The Effect of Cu and Sc on the Localized Corrosion Resistance of Al-Zn-Mg-X Alloys, J. Alloys Comp., 2019, 799, p 1–14.

    Article  CAS  Google Scholar 

  16. K.D. Ralstona, D. Fabijanica and N. Birbilisa, Effect of Grain Size on Corrosion of High Purity Aluminium, Electrochim. Acta, 2011, 56, p 1729–1736.

    Article  Google Scholar 

  17. M.T. Grainne and B.B. Carmel, Electrochemical Studies on Single-Crystal Aluminium Surfaces, Electrochim. Acta, 1998, 43(12–13), p 1715–1720.

    Google Scholar 

  18. O.P. Arora and M. Metzger, Structure-Dependent Corrosion of High-Purity Al in HNO3 and H2SO4, Corros. Sci., 1971, 11(9), p 631–639.

    Article  Google Scholar 

  19. L. Fan, H. Lu, J. Leng et al., The Effect of Crystal Orientation on the Aluminum Anodes of the Aluminum–Air Batteries in Alkaline Electrolytes, J. Power Sour., 2015, 299(20), p 66–69.

    Article  CAS  Google Scholar 

  20. M. Rohwerder and F. Turcu, High-Resolution Kelvin Probe Microscopy in Corrosion Science: Scanning Kelvin Probe Force Microscopy(SKPFM) Versus Classical Scanning Kelvin Probe (SKP), Electrochim Acta., 2007, 53, p 290–299.

    Article  CAS  Google Scholar 

  21. A. Godon, J. Creus, X. Feaugas, E. Conforto, L. Pichon, C. Armand and C. Savall, Characterization of Electrodeposited Nickel Coatings from Sulphamate Electrolyte Without Additive, Mater. Character., 2011, 62(2), p 164–273.

    Article  CAS  Google Scholar 

  22. H. Luo, C.F. Dong, K. Xiao and X.G. Li, Characterization of Passive Film on 2205 Duplex Stainless Steel in Sodium Thiosulphate Solution, Appl. Surf. Sci., 2011, 258(1), p 631–639.

    Article  CAS  Google Scholar 

  23. M.L. Zheludkevich, K.A. Yasakau and S.K. Poznyak, MGS Ferreira Triazole and Thiazole Derivatives as Corrosion Inhibitors for AA2024 Aluminium Alloy, Corros. Sci., 2005, 47, p 3368–3383.

    Article  CAS  Google Scholar 

  24. P. Gupta, G. Tenhundfeld, E.O. Daigle and D. Ryabkov, Electrolytic Plasma Technology: Science and Engineering-an Overview, Surf. Coat. Techol., 2007, 201(21), p 8746–8760.

    Article  CAS  Google Scholar 

  25. S. Aliasghari, P. Skeleton and G.E. Thompson, Plasma Electrolytic Oxidation of Titanium in a Phosphate/Silicate Electrolyte and Tribological Performance of the Coatings, Appl. Surf. Sci., 2014, 316, p 463–476.

    Article  CAS  Google Scholar 

  26. M. Sarvghad-Moghaddam, R. Parvizi, A. Davoodi, M. Haddad-Sabzevar and A. Imani, Establishing a Correlation Between Interfacial Microstructures and Corrosion Initiation Sites in Al/Cu Joints by SEM-EDS and AFM-SKPFM, Corros. Sci., 2014, 79, p 148–158.

    Article  CAS  Google Scholar 

  27. Z. Zhang, Z. Xu et al., Corrosion behaviors of AA5083 and AA6061 in artificial seawater effects of and temperature, Int. J. Electrochem. Sci., 2020, 15, p 1218–1229. https://doi.org/10.20964/2020.02.01

    Article  CAS  Google Scholar 

  28. G.L. Song and R. Mishra, Crystallographic Orientation and Electrochemical Activity of AZ31 Mg alloy, Electrochem. Commun., 2010, 12(8), p 1009–1012.

    Article  CAS  Google Scholar 

  29. M.J. Hong, H.F. Xiao and S.Y. Yuan, Effect of Grain Morphology on the Degradation Behavior of Mg-4 wt% Zn Alloy in Hank’s Solution, Mater. Sci Eng., 2020, 106, p 01–09.

    Google Scholar 

  30. H.M. Jia, X.H. Feng and Y.S. Yang, Effect of Crystal Orientation on Corrosion Behavior of Directionally Solidified Mg-4 wt% Zn Alloy, J. Mater. Sci. Technol., 2018, 034(007), p 1229–1235.

    Article  CAS  Google Scholar 

  31. G.-L. Song and Z. Xu, Crystal Orientation and Electrochemical Corrosion of Polycrystalline Mg, Corros. Sci., 2012, 63, p 100–112.

    Article  CAS  Google Scholar 

  32. D.A. Abayarathna, E.B.A. Hale, T.J.A. O’Keefe et al., Effects of Sample Orientation on the Corrosion of Zinc in Ammonium Sulfate and Sodium Hydroxide Solutions, Corros. Sci., 1991, 32(7), p 755–768.

    Article  CAS  Google Scholar 

  33. J.L. Weininger and M.W. Breiter, Effect of Crystal Structure on the Anodic Oxidation of Nickel, J. Electrochemica Soc., 1963, 110(6), p 484–490.

    Article  CAS  Google Scholar 

  34. C. Cao, Principles of Electrochemistry of Corrosion (3rd Edition). Corros. Sci. Protect. Technol. 20(3): 1-7 (2008)

  35. V. Christian, Corrosion of Aluminum, Corros. Sci., 2004, 9, p 4–97.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 51771027, 51901018, and 21676216), the Natural Science Foundation of Beijing Municipality (Grant No. 2212037), the Fundamental Research Funds for the Central Universities (Grant No. FRF-AT-20-07, 06500119), the National Science and Technology Resources Investigation Program of China (Grant No. 2019FY101400), the National Key Research and Development Program of China (Grant No. 2017YFB0702100), China Postdoctoral Science Foundation (Grant No. 2019M660456) and Young Elite Scientists Sponsorship Program by China Association for Science and Technology (YESS, 2019QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bowei Zhang or Junsheng Wu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, W., Zhang, B. et al. Effect of Crystal Orientation on the Corrosion Behavior of As-Cast Pure Aluminum Anodes in Air Batteries. J. of Materi Eng and Perform 31, 3584–3593 (2022). https://doi.org/10.1007/s11665-021-06531-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06531-4

Keywords

Navigation