Skip to main content

Advertisement

Log in

Microstructure and Properties of Cu-0.4 wt.% Al2O3 Composites Fabricated by Hot Extrusion and Cold Drawing

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, Cu-0.4 wt.% Al2O3 composites were successfully prepared by internal oxidation and hot extrusion followed by cold drawing. Microstructure, texture, mechanical properties and electrical conductivity of the Cu-0.4 wt.% Al2O3 composites were systematically studied. Our results show that the cold drawn S2 sample contains a much finer grain (about 1 μm) than the extruded S1 sample (about 3 μm). The S1 and S2 samples have a typical double fiber texture, with <100> and <111> parallel to extrusion direction (ED) or drawing direction (DD). The ultimate tensile strength, tensile yield strength and electrical conductivity of S1 sample are 460 MPa, 375 MPa and 90% IACS, respectively. After cold drawing, the S2 sample possesses a higher ultimate tensile strength (560 MPa) and tensile yield strength (520 MPa) than S1 sample, but a slightly lower electrical conductivity (87.5% IACS) than S1 sample. After annealing at 900 °C, the S1 and S2 samples also have a high microhardness of about 125 HV, which indicates that the Cu-0.4 wt.% Al2O3 composites have an excellent thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Zeng, D. Zheng, H. Li, D. Zhou and D. Zhang, Using Intragranular and Intergranular Second Phase Particles Simultaneously to Achieve High Temperature Stabilization of Ultrafine Grained Cu, Mat. Sci. Eng. A, 2016, 670, p 41–48.

    Article  CAS  Google Scholar 

  2. W. Zeng, J. Xie, D. Zhou, Z. Fu, D. Zhang and E.J. Lavernia, Bulk Cu-NbC Nanocomposites with High Strength and High Electrical Conductivity, J. Alloys Compd., 2018, 745, p 55–62.

    Article  CAS  Google Scholar 

  3. I. Dinaharan, R. Sathiskumar and N. Murugan, Effect of Ceramic Particulate Type on Microstructure and Properties of Copper Matrix Composites Synthesized by Friction Stir Processing, J. Mater. Res. Technol., 2016, 5(4), p 302–316.

    Article  CAS  Google Scholar 

  4. S.B. Chandrasekhar, N.P. Wasekar, M. Ramakrishna, P. Suresh Babu, T.N. Rao and B.P. Kashyap, Dynamic Strain Ageing in Fine Grained Cu-1 wt.%Al 2 O 3 Composite Processed by Two Step Ball Milling and Spark Plasma Sintering, J. Alloys Compd., 2016, 656, p 423–430.

    Article  CAS  Google Scholar 

  5. D. Zhou, H. Geng, D. Zhang, W. Zeng, C. Kong and P. Munroe, An Insight into the Strain Rate Dependence of Tensile Ductility of an Ultrafine Grained Cu Matrix Nanocomposite, Mat. Sci. Eng. A, 2017, 688, p 164–168.

    Article  CAS  Google Scholar 

  6. S.B. Chandrasekhar, S. Sudhakara Sarma, M. Ramakrishna, P. Suresh Babu, T.N. Rao and B.P. Kashyap, Microstructure and Properties of Hot Extruded Cu–1wt.% Al2O3 Nano-Composites Synthesized by Various Techniques, Mat. Sci. Eng. A, 2014, 591, p 46–53.

    Article  CAS  Google Scholar 

  7. V. Rajkovic, D. Bozic and M.T. Jovanovic, Effects of Copper and Al2O3 Particles on Characteristics of Cu–Al2O3 Composites, Mater. Design, 2010, 31, p 1962–1970.

    Article  CAS  Google Scholar 

  8. M.X. Guo, M.P. Wang, L.F. Cao and R.S. Lei, Work Softening Characterization of Alumina Dispersion Strengthened Copper Alloys, Mater. Charact., 2007, 58, p 928–935.

    Article  CAS  Google Scholar 

  9. D. Zhou, X. Wang, O. Muránsky, X. Wang, Y. Xie, C. Yang and D. Zhang, Heterogeneous Microstructure of an Al2O3 Dispersion Strengthened Cu by Spark Plasma Sintering and Extrusion and its Effect on Tensile Properties and Electrical Conductivity, Mat. Sci. Eng. A, 2018, 730, p 328–335.

    Article  CAS  Google Scholar 

  10. Y. Pan, S. Xiao, X. Lu, C. Zhou, Y. Li, Z. Liu, B. Liu, W. Xu, C. Jia and X. Qu, Fabrication, Mechanical Properties and Electrical Conductivity of Al2O3 Reinforced Cu/CNTs Composites, J. Alloys Compd., 2019, 782, p 1015–1023.

    Article  CAS  Google Scholar 

  11. Y. Shi, W. Chen, L. Dong, H. Li and Y. Fu, Enhancing Copper Infiltration into Alumina Using Spark Plasma Sintering to Achieve High Performance Al2O3/Cu Composites, Ceram. Int., 2018, 44, p 57–64.

    Article  CAS  Google Scholar 

  12. K. Ďurišinová, J. Ďurišin, M. Orolínová, M. Ďurišin and J. Szabó, Effect of Mechanical Milling on Nanocrystalline Grain Stability and Properties of Cu–Al2O3 Composite Prepared by Thermo-Chemical Technique and Hot Extrusion, J. Alloys Compd., 2015, 618, p 204–209.

    Article  Google Scholar 

  13. Y. Dong, X. Wang, Y. Xie, C. Yang and D. Zhou, Tunable Microstructures and Tensile Mechanical Properties of Oxide-Dispersion-Strengthened Cu by Extrusion and Secondary Processing, J. Alloys Compd., 2020, 812, p 152112.

    Article  CAS  Google Scholar 

  14. X.-H. Zhang, X.-X. Li, H. Chen, T.-B. Li, W. Su and S.-D. Guo, Investigation on Microstructure and Properties of Cu–Al2O3 Composites Fabricated by a Novel In-situ Reactive Synthesis, Mater. Design, 2016, 92, p 58–63.

    Article  CAS  Google Scholar 

  15. H. Zhuo, J. Tang and N. Ye, A Novel Approach for Strengthening Cu–Y2O3 Composites by In situ Reaction at Liquidus Temperature, Mat. Sci. Eng. A, 2013, 584, p 1–6.

    Article  CAS  Google Scholar 

  16. J. Lee, Y.C. Kim, S. Lee, S. Ahn and N.J. Kim, Correlation of the Microstructure and Mechanical Properties of Oxide-Dispersion-Strengthened Coppers Fabricated by Internal Oxidation, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2004, 35A, p 493–502.

    Article  CAS  Google Scholar 

  17. K. Song, J. Xing, Q. Dong, P. Liu, B. Tian and X. Cao, Internal Oxidation of Dilute Cu–Al alloy Powers with Oxidant of Cu2O, Mat. Sci. Eng. A, 2004, 380, p 117–122.

    Article  Google Scholar 

  18. C. Li, Y. Xie, D. Zhou, W. Zeng, J. Wang, J. Liang and D. Zhang, A Novel Way for Fabricating Ultrafine Grained Cu-4.5 vol% Al2O3 Composite with High Strength and Electrical Conductivity, Mater. Charact., 2019, 155, p 109775.

    Article  CAS  Google Scholar 

  19. F. Ren, A. Zhi, D. Zhang, B. Tian, A.A. Volinsky and X. Shen, Preparation of Cu–Al2O3 Bulk Nano-Composites by Combining Cu–Al Alloy Sheets Internal Oxidation with Hot Extrusion, J. Alloys Compd., 2015, 633, p 323–328.

    Article  CAS  Google Scholar 

  20. G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wol-fram, Acta Metall., 1953, 1, p 22–31.

    Article  CAS  Google Scholar 

  21. G.K. Williamson, R.E. Smallman (1956) Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the x-ray Debye-Scherrer Spectrum, Philos. Mag.: 134–46.

  22. C. Li, W. Zeng, Y. Xie, J. Wang, J. Liang, R.E. Logé and D. Zhang, Annealing Hardening and Softening of an Ultrafine Grained Cu-4.5vol.%Al2O3 Nanocomposite, Mat. Sci. Eng. A, 2020, 778, p 139126.

    Article  CAS  Google Scholar 

  23. L. Guobin, S. Jibing, G. Quanmei and W. Ru, Fabrication of the Nanometer Al2O3/Cu Composite by Internal Oxidation, J. Mater. Process. Tech., 2005, 170, p 336–340.

    Article  Google Scholar 

  24. D. Zhou, W. Zeng and D. Zhang, A Feasible Ultrafine Grained Cu Matrix Composite Microstructure for Achieving High Strength and High Electrical Conductivity, J. Alloys Compd., 2016, 682, p 590–593.

    Article  CAS  Google Scholar 

  25. F. Wang, Y. Li, K. Yamanaka, K. Wakon, K. Harata and A. Chiba, Influence of Two-step Ball-Milling Condition on Electrical and Mechanical Properties of TiC-Dispersion-Strengthened Cu Alloys, Mater. Design, 2014, 64, p 441–449.

    Article  CAS  Google Scholar 

  26. J. Lee, J.Y. Jung, E.-S. Lee, W.J. Park, S. Ahn and N.J. Kim, Microstructure and Properties of Titanium Boride Dispersed Cu Alloys Fabricated by Spray Forming, Mat. Sci. Eng. A, 2000, 277, p 274–283.

    Article  Google Scholar 

  27. K. Huang, Q. Zhao, Y. Li and K. Marthinsen, Two-stage Annealing of a Cold-Rolled Al–Mn–Fe–Si Alloy with Different Microchemistry States, J. Mater. Process. Tech., 2015, 221, p 87–99.

    Article  CAS  Google Scholar 

  28. Z. Zhang and D. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scripta Mater., 2006, 54, p 1321–1326.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Guangdong Major Project of Basic and Applied Basic Research (2020B0301030006) and Guangdong Academy of Science Fund (2020GDASYL-20200101001) and National Natural Science Foundation of China (51905111) and Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials (HKDNM2019022) and Key Area Research and Development Program of Guangdong Province (2019B010940001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Zhang, D., Feng, B. et al. Microstructure and Properties of Cu-0.4 wt.% Al2O3 Composites Fabricated by Hot Extrusion and Cold Drawing. J. of Materi Eng and Perform 31, 1241–1249 (2022). https://doi.org/10.1007/s11665-021-06247-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06247-5

Keywords

Navigation