Skip to main content
Log in

Comparative Study between Small Punch Tests and Finite Element Analysis of Miniature Steel Specimens

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The experimental method of small punch tests (SPT) using miniature specimens has great advantages and broad application prospects for material research in space, nuclear plants and other extreme environments. However, at present, the application of this method lacks unified standards and norms, which affects its application effect. Based on these, the mechanical properties of φ3 mm disks miniature specimens of SIMP steel with different thicknesses are investigated through SPT experiments, finite element modeling (FEM) analyses and scanning electron microscopy observations. All the results demonstrate that the relationship of the mechanical properties of standard tensile test samples derived from the data of small punch test is established, and the method of establishing this mechanical relationship is also provided. Most importantly, based on the shear stress analyses of FEM calculations, most mechanical properties, such as yield strength, ultimate strength, fracture toughness and elastic modulus, can be obtained directly through SPT experiments. These findings may improve the possibility of establishing a widely accepted program for obtaining basic materials properties from SPT experimental data by using FEM simulations and provide a new comparison scheme (or norm) for obtaining accurate data from miniature specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Figure 9.
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T.Y. Deng, J.R. Sun, P.T. Tai, Y.Y. Wang, L.Q. Zhang, H.L. Chang, Z.G. Wang, L.J. Niu, Y.B. Sheng, D.S. Xue, Q. Huang, Y.F. Zhou, P. Song and J.Y. Li, Ti3AlC2, a Candidate Structural Material for Innovative Nuclear Energy System: the Microstructure Phase Transformation and Defect Evolution Induced by Energetic Heavy-Ion Irradiation, Acta Mater., 2020, 189, p 188–203.

    Article  CAS  Google Scholar 

  2. K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383, p 189–195.

    Article  CAS  Google Scholar 

  3. D.E.J. Armstrong, C.D. Hardie, J.S.K.L. Gibson, A.J. Bushby, P.D. Edmondson and S.G. Roberts, Small-Scale Characterisation of Irradiated Nuclear Materials: Part II Nanoindentation and Micro-Cantilever Testing of Ion Irradiated Nuclear Materials, J. Nucl. Mater., 2015, 462, p 374–381.

    Article  CAS  Google Scholar 

  4. T. Gozani, Active Nondestructive Assay of Nuclear Materials: Principles and Applications, Nuclear Disarmament Safeguards & Physical Protection, CR-0602, Vol 1, 1981, p 389–403 (in English).

  5. K. Kumar, A. Pooleery, K. Madhusoodanan, R.N. Singh, J.K. Chakravartty, R.S. Shriwastaw, B.K. Dutta and R.K. Sinha, Evaluation of Ultimate Tensile Strength Using Miniature Disk Bend Test, J. Nucl. Mater., 2015, 461, p 100–111.

    Article  CAS  Google Scholar 

  6. R.J. Lancaster, S.P. Jeffs, H.W. Illsley, C. Argyrakis, R.C. Hurst and G.J. Baxter, Development of a Novel Methodology to Study Fatigue Properties Using the Small Punch Test, Mater. Sci. Eng., A, 2019, 748, p 21–29.

    Article  CAS  Google Scholar 

  7. I.I. Cuesta, C. Rodriquez, F.J. Belzunce and J.M. Alegre, Analysis of Different Techniques for Obtaining Pre-Cracked/notched Small Punch Test Specimens, Eng. Fail. Anal., 2011, 18, p 2282–2287.

    Article  Google Scholar 

  8. S. Yang, J. Zhou, X. Ling and Z. Yang, Effect of Geometric Factors and Processing Parameters on Plastic Damage of SUS304 Stainless Steel by Small Punch Test, Mater. Des., 2012, 41, p 447–452.

    Article  CAS  Google Scholar 

  9. P. Dymáček, Recent Developments in Small Punch Testing: Applications at Elevated Temperatures, Theor. Appl. Fract. Mech., 2016, 86, p 25–33.

    Article  Google Scholar 

  10. G.E. Lucas, The Development of Small Specimen Mechanical Test Techniques, J. Nucl. Mater., 1983, 117, p 327–339.

    Article  CAS  Google Scholar 

  11. X. Mao and H. Takahashi, Development of a Further-Miniaturized Specimen of 3 Mm Diameter for Tem Disk (ø 3 Mm) Small Punch Tests, J. Nucl. Mater., 1987, 150, p 42–52.

    Article  CAS  Google Scholar 

  12. G.E. Lucas, Review of Small Specimen Test Techniques for Irradiation Testing, Metall. Trans. A, 1990, 21, p 1105–1119.

    Article  Google Scholar 

  13. X. Mao, H. Takahashi and T. Kodaira, Supersmall Punch Test to Estimate Fracture Toughness JIc and Its Application to Radiation Embrittlement of 2.25Cr-1Mo Steel, Mater. Sci. Eng., A, 1992, 150, p 231–236.

    Article  Google Scholar 

  14. M. Bruchhausen, S. Holmström, I. Simonovski, T. Austin, J.-M. Lapetite, S. Ripplinger and F. de Haan, Recent Developments in Small Punch Testing: Tensile Properties and DBTT, Theor. Appl. Fract. Mech., 2016, 86, p 2–10.

    Article  CAS  Google Scholar 

  15. G.E. Lucas, G.R. Odette, M. Sokolov, P. Spätig, T. Yamamoto and P. Jung, Recent Progress in Small Specimen Test Technology, J. Nucl. Mater., 2002, 307, p 1600–1608.

    Article  Google Scholar 

  16. J.S. Lee, I.S. Kim and A.K. Kimura, Application of Small Punch Test to Evaluate Sigma-Phase Embrittlement of Pressure Vessel Cladding Material, J. Nucl. Sci. Technol., 2003, 40, p 664–671.

    Article  CAS  Google Scholar 

  17. M. Abendroth and S. Soltysiak, Assessment of Material Properties by Means of the Small Punch Test, Recent Trends Fract. Damage Mech., 2015, 1, p 127–157.

    Google Scholar 

  18. E.N. Campitelli, P. Spätig, J. Bertsch and C. Hellwig, Assessment of Irradiation-Hardening on Eurofer97’ and Zircaloy 2 with Punch Tests and Finite-Element Modeling, Mater. Sci. Eng., A, 2005, 400, p 386–392.

    Article  Google Scholar 

  19. P. Kumar, J. Chattopadhyay and B.K. Dutta, On the Correlation between Minimum Thickness and Central Deflection during Small Punch Test, J. Nucl. Mater., 2016, 475, p 37–45.

    Article  CAS  Google Scholar 

  20. J. Zhong, Xu. Tong, K. Guan and J. Szpunar, A Procedure for Predicting Strength Properties Using Small Punch Test and Finite Element Simulation, Int. J. Mech. Sci., 2019, 152, p 228–235.

    Article  Google Scholar 

  21. J.C. Chica, P.M. Díez and M.P. Calzada, Improved Correlation for Elastic Modulus Prediction of Metallic Materials in the Small Punch Test, Int. J. Mech. Sci., 2017, 134, p 112–122.

    Article  Google Scholar 

  22. X. Jia and Y. Dai, Small Punch Tests on Martensitic/ferritic Steels F82H, T91 and Optimax-A Irradiated in SINQ Target-3, J. Nucl. Mater., 2003, 323, p 360–367.

    Article  CAS  Google Scholar 

  23. Y. Dai, X.J. Jia and K. Farrell, Mechanical Properties of Modified 9Cr–1Mo (T91) Irradiated at ⩽ 300 °C in SINQ Target-3, J. Nucl. Mater., 2003, 318, p 192–199.

    Article  CAS  Google Scholar 

  24. C. Yang, T. Wei, O. Muránsky, D. Carr, H. Huang and X. Zhou, The Effect of Ball-Milling Time and Annealing Temperature on Fracture Toughness of Ni-3 wt.% SiC Using Small Punch Testing, Mater. Charact., 2018, 138, p 289–295.

    Article  CAS  Google Scholar 

  25. Z.-X. Wang, H.-J. Shi, Lu. Jian, P. Shi and X.-F. Ma, Small Punch Testing for Assessing the Fracture Properties of the Reactor Vessel Steel with Different Thicknesses, Nucl. Eng. Des., 2008, 238, p 3186–3193.

    Article  CAS  Google Scholar 

  26. P. Kubík, F. Šebek, J. Petruška, J. Hůlka, N. Park and H. Huh, Comparative Investigation of Ductile Fracture with 316L Austenitic Stainless Steel in Small Punch Tests: Experiments and Simulations, Theor. Appl. Fract. Mech., 2018, 98, p 186–198.

    Article  Google Scholar 

  27. K. Song, L. Zhao, Xu. Lianyong, Y. Han and H. Jing, Experimental and Numerical Analysis of Creep and Damage Behavior of P92 Steel by Small Punch Tests, Theor. Appl. Fract. Mech., 2019, 100, p 181–190.

    Article  CAS  Google Scholar 

  28. L. Zhao, K. Song, L. Xu, Y. Han, H. Jing, Y. Zhang and H. Li, Determination of Creep Properties of an Advanced Fe-Cr-Ni Alloy Using Small Punch Creep Test with a Modified Creep Strain Model, Theor. Appl. Fract. Mech., 2019, 104, p 102324.

    Article  CAS  Google Scholar 

  29. L. Zhao, K. Song, L. Xu, Y. Han, H. Jing, H. Li and Y. Zhang, Investigating Creep Rupture and Damage Behavior of 41Fe-25.5Cr-23.5Ni Alloy Small Punch Creep Specimens Using a Novel Microstructure Meshing Approach, Mater. Sci. Eng., A, 2019, 766, p 138370.

    Article  CAS  Google Scholar 

  30. I. Simonovski, S. Holmström and M. Bruchhausen, Small Punch Tensile Testing of Curved Specimens: Finite Element Analysis and Experiment, Int. J. Mech. Sci., 2017, 120, p 204–213.

    Article  Google Scholar 

  31. Y. Shindo, K. Horiguchi, T. Sugo and Y. Mano, Finite Element Analysis and Small Punch Testing for Determining the Cryogenic Fracture Toughness of Austenitic Stainless Steel Welds, J. Test. Eval., 2000, 28, p 431–437.

    Article  CAS  Google Scholar 

  32. I. Simonovski, S. Holmström, D. Baraldi and R. Delville, Investigation of Cracking in Small Punch Test for Semi-Brittle Materials, Theor. Appl. Fract. Mech., 2020, 108, p 1–12.

    Article  Google Scholar 

  33. T. Gao, L. Ying, Hu. Ping, X. Han, H. Rong, Wu. Yi and J. Sun, Investigation on Mechanical Behavior and Plastic Damage of AA7075 Aluminum Alloy by Thermal Small Punch Test: Experimental Trials, Numerical Analysis, J. Manuf. Process., 2020, 50, p 1–16.

    Article  Google Scholar 

  34. L. Xue, X. Ling and S. Yang, Mechanical Behaviour and Strain Rate Sensitivity Analysis of TA2 by the Small Punch Test, Theor. Appl. Fract. Mech., 2019, 99, p 9–17.

    Article  CAS  Google Scholar 

  35. K. Liu and S.N. Melkote, Material Strengthening Mechanisms and Their Contribution to Size Effect in Micro-Cutting, J. Manuf. Sci. Eng., 2006, 128, p 730.

    Article  Google Scholar 

  36. G. Simons, C. Weippert, J. Dual and J. Villain, Size Effects in Tensile Testing of Thin Cold Rolled and Annealed Cu Foils, Mater. Sci. Eng., A, 2006, 416, p 290–299.

    Article  Google Scholar 

  37. M. Rund, R. Procházka, P. Konopík, J. Džugan and H. Folgar, Investigation of Sample-Size Influence on Tensile Test Results at Different Strain Rates, Proc. Eng., 2015, 114, p 410–415.

    Article  CAS  Google Scholar 

  38. J. Henry, S.A. Maloy, Irradiation-resistant ferritic and martensitic steels as core materials for Generation IV nuclear reactors, Structural Materials for Generation IV Nuclear Reactors, Vol 1, 2017, p 329–355 (in English).

  39. J. Liu, Q. Shi, H. Luan, W. Yan, W. Sha, W. Wang, Y. Shan and K. Yang, Oxidation and Tensile Behavior of Ferritic/martensitic Steels after Exposure to Lead-Bismuth Eutectic, Mater. Sci. Eng., A, 2016, 670, p 97–105.

    Article  CAS  Google Scholar 

  40. C. Liu, M.-C. Zhao, T. Unenbayar, Y.-C. Zhao, B. Xie, Y. Tian, Y.-Y. Shan and K. Yang, Hot Deformation Behavior of a New Nuclear Use Reduced Activation Ferritic/martensitic Steel, Acta Metall. Sin. (english Letters), 2018, 32, p 825.

    Article  Google Scholar 

  41. P. Jin, T. Shen, M. Cui, Y. Zhu, B. Li, T. Zhang, J. Li, S. Jin, Lu. Eryang, X. Cao and Z. Wang, Study on Vacancy-Type Defects in SIMP Steel Induced by Separate and Sequential H and He Ion Implantation, J. Nucl. Mater., 2019, 520, p 131–139.

    Article  CAS  Google Scholar 

  42. M. Bruchhausen, E. Altstadt, T. Austin, P. Dymacek, S. Holmström, S. Jeffs, R. Lacalle, R. Lancaster, K. Matocha and J. Petzova, European Standard on Small Punch Testing of Metallic Materials, Ubiq. Proc., 2018, 1, p 11.

    Article  Google Scholar 

  43. K. Matocha and R. Hurst, Small Punch Testing—The Transition from a Code of Practice to a European Testing Standard, Key Eng. Mater., 2017, 734, p 3–22.

    Article  Google Scholar 

  44. B. Yang, F.-Z. Xuan and J.-K. Chen, Evaluation of the Microstructure Related Strength of CrMoV Weldment by Using the in-Situ Tensile Test of Miniature Specimen, Mater. Sci. Eng., A, 2018, 736, p 193–201.

    Article  CAS  Google Scholar 

  45. H. Ge, L. Peng, Y. Dai, Q. Huang and M. Ye, Tensile Properties of CLAM Steel Irradiated up to 20.1 Dpa in STIP-V, J. Nucl. Mater., 2016, 468, p 240–245.

    Article  CAS  Google Scholar 

  46. W.D. Nix and H. Gao, Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity, J. Mech. Phys. Solids., 1998, 46, p 411–425.

    Article  CAS  Google Scholar 

  47. H. Gao, Y. Huang, W.D. Nix and J.W. Hutchinson, Mechanism-Based Strain Gradient Plasticity—I. Theory, J. Mech. Phys. Solids., 1999, 47, p 1239–1263.

    Article  Google Scholar 

  48. T. Misawa, S. Nagata, S. Aoki, J. Ishizaka and Y. Hamaguchi, Fracture Toughness Evaluation of Fusion Reactor Structural Steels at Low Temperatures by Small Punch Tests, J. Nucl. Mater., 1989, 169, p 225–232.

    Article  CAS  Google Scholar 

  49. P. Kumar, B.K. Dutta and J. Chattopadhyay, Numerical Development of a New Correlation between Biaxial Fracture Strain and Material Fracture Toughness for Small Punch Test, J. Nucl. Mater., 2017, 486, p 332–338.

    Article  CAS  Google Scholar 

  50. E. Martínez-Pañeda, I.I. Cuesta, I. Peñuelas, A. Díaz and J.M. Alegre, Damage Modeling in Small Punch Test Specimens, Theor. Appl. Fract. Mech., 2016, 86, p 51–60.

    Article  Google Scholar 

  51. I.I. Cuesta, J.M. Alegre and R. Lacalle, Determination of the Gurson–tvergaard Damage Model Parameters for Simulating Small Punch Tests, Fatigue. Fract. Eng. m., 2010, 33, p 703–713.

    Google Scholar 

  52. H.T. Pham and T. Iwamoto, An Evaluation of Fracture Properties of Type-304 Austenitic Stainless Steel at High Deformation Rate Using the Small Punch Test, Int. J. Mech. Sci., 2018, 144, p 249–261.

    Article  Google Scholar 

  53. W. Wen, G.A. Jackson, H. Li and W. Sun, An Experimental and Numerical Study of a CoNiCrAlY Coating Using Miniature Specimen Testing Techniques, Int. J. Mech. Sci., 2019, 157, p 348–356.

    Article  Google Scholar 

Download references

Acknowledgment

This research project was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 12075293 and 91426304), the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. E028341Y) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2016365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Sun, J., Tai, P. et al. Comparative Study between Small Punch Tests and Finite Element Analysis of Miniature Steel Specimens. J. of Materi Eng and Perform 30, 9094–9107 (2021). https://doi.org/10.1007/s11665-021-06098-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06098-0

Keywords

Navigation