Skip to main content
Log in

Hot Deformation Behavior of a New Nuclear Use Reduced Activation Ferritic/Martensitic Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The hot deformation behavior and workability of a new reduced activation ferritic/martensitic steel named SIMP steel for accelerator-driven system were studied. The flow curve and its microstructure were studied at 900–1200 °C and strain rate range of 0.001–10 s−1. The results showed that the deformation behavior of the SIMP steel during hot compression could be manifested by the Zener–Hollomon parameter in an exponent-type equation. Based on the obtained constitutive equation, the calculated flow stresses were in agreement with the experimentally measured ones, and the average activity energies QDRV and QHW for the initiation of dynamic recrystallization and the peak strain were calculated to be 476.1 kJ/mol and 462.7 kJ/mol, respectively. Furthermore, based on the processing maps and microstructure evolution, the optimum processing condition for the SIMP steel was determined to be 1050–1200 °C/0.001–0.1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Q.Q. Shi, J. Liu, W. Wang, W. Yan, Y.Y. Shan, K. Yang, Oxid. Met. 521, 83 (2015)

    Google Scholar 

  2. E. Camus, N. Wanderka, S. Welzel, E. Materna-Morris, H. Wollenberger, Mater. Sci. Eng. A 250, 37 (1998)

    Article  Google Scholar 

  3. R.L. Klueh, J. Nucl. Mater. 378, 159 (2008)

    Article  Google Scholar 

  4. C. Liu, Q.Q. Shi, W. Yan, C.G. Shen, K. Yang, Y.Y. Shan, Y.Y. Shan, M.C. Zhao, J. Mater. Sci. Technol. (2019). https://doi.org/10.1016/j.jmst.2018.07.002

    Google Scholar 

  5. Q.Q. Shi, J. Liu, H. Luan, Z.G. Yang, W. Wang, W. Yan, Y.Y. Shan, K. Yang, J. Nucl. Mater. 457, 135 (2015)

    Article  Google Scholar 

  6. J. Liu, Q.Q. Shi, H. Luan, W. Yan, W. Sha, W. Wang, Y.Y. Shan, K. Yang, Oxid. Met. 84, 1 (2015)

    Article  Google Scholar 

  7. O.I. Eliseeva, V.P. Tsisar, V.M. Fedirko, Y.S. Matychak, Mater. Sci. 40, 260 (2004)

    Article  Google Scholar 

  8. O.I. Eliseeva, V.P. Tsisar, Mater. Sci. 43, 230 (2007)

    Article  Google Scholar 

  9. M.C. Zhao, Y.Y. Shan, F.R. Xiao, K. Yang, Mater. Sci. Technol. 19, 355 (2003)

    Article  Google Scholar 

  10. H.Q. Huang, H.S. Di, N. Yan, J.C. Zhang, Y.G. Deng, R.D.K. Misra, J.P. Li, Acta Metall. Sin. (Engl. Lett.) 31, 503 (2018)

    Article  Google Scholar 

  11. M.C. Zhao, T. Hanamura, H. Qiu, K. Yang, Metall. Mater. Trans. A 37, 1657 (2006)

    Article  Google Scholar 

  12. J. Han, J.P. Sun, Y. Han, H. Liu, Acta Metall. Sin. (Engl. Lett.) 30, 1080 (2017)

    Article  Google Scholar 

  13. Y.C. Lin, X.M. Chen, Mater. Des. 32, 1733 (2011)

    Article  Google Scholar 

  14. Y.P. Li, R.B. Song, E.D. Wen, F.Q. Yang, Acta Metall. Sin. (Engl. Lett.) 29, 441 (2016)

    Article  Google Scholar 

  15. H.J. Mcqueen, S. Yue, N.D. Ryan, E. Fry, J. Mater. Process. Technol. 53, 293 (1995)

    Article  Google Scholar 

  16. W.F. Zhang, L. Xiao, W. Sha, W. Wang, W. Yan, Y.Y. Shan, K. Yang, Mater. Sci. Eng. A 590, 199 (2014)

    Article  Google Scholar 

  17. A.S. Taylor, P.D. Hodgson, Mater. Sci. Eng. A 528, 3310 (2011)

    Article  Google Scholar 

  18. H.J. Mcqueen, Met. Forum 4, 81 (1981)

    Google Scholar 

  19. D.X. Wen, Y.C. Lin, X.H. Li, S.K. Singh, J. Alloys Compd. 764, 1008 (2018)

    Article  Google Scholar 

  20. H. Mirzadeh, A. Najafizadeh, ISIJ Int. 53, 680 (2013)

    Article  Google Scholar 

  21. N.D. Ryan, H.J. Mcqueen, J. Mater. Process. Technol. 21, 177 (1990)

    Article  Google Scholar 

  22. E.I. Poliak, J.J. Jonas, Acta Metall. 44, 127 (1996)

    Google Scholar 

  23. C.M. Sellars, W.J. Mctegart, Memoires. Sci. Rev. Met. 63, 734 (1966)

    Google Scholar 

  24. C.M. Sellars, W.J. Mctegart, Acta Metall. 14, 1136 (1966)

    Article  Google Scholar 

  25. F. Garofalo, Trans. AIME 227, 351 (1963)

    Google Scholar 

  26. R. Shi, Z. Liu, J. Iron. Steel Res. Int. 18, 53 (2011)

    Article  Google Scholar 

  27. B. Wang, W. Fu, Z. Lv, P. Jiang, W. Zhang, Y. Tian, Mater. Sci. Eng. A 487, 108 (2008)

    Article  Google Scholar 

  28. M. Carsí, R. Allende, F. Peñalba, J.A. Jiménez, O.A. Ruano, Steel Res. Int. 75, 26 (2004)

    Article  Google Scholar 

  29. R. Sandström, R. Lagneborg, Scr. Metall. 9, 59 (1975)

    Article  Google Scholar 

  30. A. Momeni, K. Dehghani, Mater. Sci. Eng. A 528, 1448 (2011)

    Article  Google Scholar 

  31. Y.V.R.K. Prasad, Indian. J. Technol. 28, 435 (1990)

    Google Scholar 

  32. H. Ziegler, Progress in Solid Mechanics (Wiley, New York, 1963)

    Google Scholar 

  33. W. Zhang, W. Sha, W. Wang, W. Yan, Y. Shan, K. Yang, Mater. Sci. Eng. A 604, 207 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51874368) and the Project of CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences (No. 2018NMSAKF03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chun Zhao.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhao, MC., Unenbayar, T. et al. Hot Deformation Behavior of a New Nuclear Use Reduced Activation Ferritic/Martensitic Steel. Acta Metall. Sin. (Engl. Lett.) 32, 825–834 (2019). https://doi.org/10.1007/s40195-018-0851-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0851-0

Keywords

Navigation