Skip to main content

Advertisement

Log in

Structural, Dielectric and Electric Modulus Studies of MnFe2O4/(MWCNTs)x Nanocomposites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nanocomposites of multi-walled carbon nanotubes (MWCNTs) and manganese ferrites (MnFe2O4) nanoparticles (i.e., MnFe2O4/(MWCNTs)x; x = 0 ~ 20 wt.% nanocomposites) were synthesized using two-step synthesis process. Initially, MnFe2O4 nanoparticles were prepared by co-precipitation method and, at second stage, different weight percentages (wt.%) of MWCNTs were added and mixed by ultra-sonication assisted method to get the desired MnFe2O4/(MWCNTs)x nanocomposites. X-ray diffraction (XRD) technique was used to investigate the crystal structure and phase purity of MnFe2O4/(MWCNTs)x nanocomposites. The accumulation of MnFe2O4 nanoparticles on the surface of MWCNTs was examined via scanning electron microscopy (SEM). The elemental composition of these nanocomposites was determined with the aid of energy-dispersive x-ray (EDX) spectroscopy, and Fourier transform infrared spectroscopy (FTIR) was employed for the estimation of different vibrational modes. The frequency-dependent dielectric measurements were conducted at room temperature with the help of LCR meter. The improved dielectric and modulus properties of MnFe2O4 nanoparticles with increasing MWCNTs contents signified the importance of these MnFe2O4/(MWCNTs)x nanocomposites for different energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L.M.R. Martinez, M. Armand and Z. Zhou, Single Lithium-Ion Conducting Solid Polymer Electrolytes: Advances and Perspectives, Chem. Soc. Rev., 2017, 46, p 797–815.

    Article  CAS  Google Scholar 

  2. A. Arya and A.L. Sharma, Polymer Electrolytes for Lithium Ion Batteries: A Critical Study, Ionics, 2017, 23, p 497–540.

    Article  CAS  Google Scholar 

  3. J.H. Lee, J. Jang, J. Choi, S.H. Moon, S. Noh, J. Kim, J.G. Kim, I.S. Kim, J.I. Park and J. Cheon, Exchange Coupled Magnetic Nanoparticles for Efficient Heat Induction, Nat. Nanotechnol., 2011, 6, p 418–422.

    Article  CAS  Google Scholar 

  4. P.P. Goswami, H.A. Choudhury, S. Chakma and V.S. Moholkar, Sonochemical Synthesis and Characterization of Manganese Ferrite Nanoparticles, Ind. Eng. Chem. Res., 2013, 52, p 17848–17855.

    Article  CAS  Google Scholar 

  5. Z. Du, D.L. Wood III. and I. Belharouak, Enabling Fast Charging of High Energy Density Li-Ion Cells with High Lithium Ion Transport Electrolytes, Electrochem. Commun., 2019, 103, p 109–113.

    Article  CAS  Google Scholar 

  6. Z. Zhang, Y. Wang, Q. Tan, Z. Zhong and F. Su, Facile Solvothermal Synthesis of Mesoporous Manganese Ferrite (MnFe2O4) Microspheres as Anode Materials for Lithium-Ion Batteries, J. Colloid Interface Sci., 2013, 398, p 185–192.

    Article  CAS  Google Scholar 

  7. W. Luo, X. Hu, Y. Sun and Y. Huang, Electrospun porous ZnCo2O4 Nanotubes as a High Performance Anode Material for Lithium-Ion Batteries, J. Mater. Chem., 2012, 22, p 8916–8921.

    Article  CAS  Google Scholar 

  8. K.M. Batoo, E.H. Raslan, S.F. Adil, I. Sharma and G. Kumar, Investigation of Electrical, Magnetic, and Optical Properties of Silver-Substituted Magnesium–Manganese Ferrite Nanoparticles, J. Mater. Sci. Mater. Electron., 2020, 31, p 7880–7888.

    Article  Google Scholar 

  9. A.B. Naik, P.P. Naik, S.S. Hasolkar and D. Naik, Structural, Magnetic and Electrical Properties along with Antifungal Activity & Adsorption Ability of Cobalt Doped Manganese Ferrite Nanoparticles Synthesized Using Combustion Route, Ceram. Int., 2020, 46, p 21046–21055.

    Article  CAS  Google Scholar 

  10. M. Stoia, C. Păcurariu, C. Mihali, I. Mălăescu, C.N. Marin and A. Căpraru, Manganese Ferrite-Polyaniline Hybrid Materials: Electrical and Magnetic Properties, Ceram. Int., 2019, 45, p 2725–2735.

    Article  CAS  Google Scholar 

  11. M.B. Hossen and A.K.M. Akther Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4, J. Adv. Ceram., 2015, 4(3), p 217–225.

    Article  CAS  Google Scholar 

  12. L. Liu, H. Zhang, Y. Mu, Y. Bai and Y. Wang, Binary Cobalt Ferrite Nanomesh Arrays as the Advanced Binder-Free Electrode for Applications in Oxygen Evolution Reaction and Supercapacitors, J. Power Sources, 2016, 327, p 599–609.

    Article  CAS  Google Scholar 

  13. Y. Yan, P. Gu, S. Zheng, M. Zheng, H. Pang and H. Xue, Facile Synthesis of an Accordion-Like Ni-MOF Superstructure for High Performance Flexible Supercapacitors, J. Mater. Chem. A, 2016, 4, p 19078–19085.

    Article  CAS  Google Scholar 

  14. M.S. Khandekar, R.C. Kambale, J.Y. Patil, Y.D. Kolekar and S.S. Suryavanshi, Effect of Calcination Temperature on the Structural and Electrical Properties of Cobalt Ferrite Synthesized by Combustion Method, J. Alloys Compd., 2011, 509, p 1861–1865.

    Article  CAS  Google Scholar 

  15. Q. Dai, K. Patel, G. Donatelli and S. Ren, Magnetic Cobalt Ferrite Nanocrystals for an Energy Storage Concentration Cell, Angew. Chem., 2016, 128, p 10595–10599.

    Article  Google Scholar 

  16. A. Lungu, I. Malaescu, C.N. Marin, P. Vlazan and P. Sfirloaga, The Electrical Properties of Manganese Ferrite Powders Prepared by Two Different Methods, Phys. B, 2015, 462, p 80–85.

    Article  CAS  Google Scholar 

  17. M.A. Khan, M.U. Islam, M. Ishaque and I.Z. Rahman, Magnetic and Dielectric Behavior of Terbium Substituted Mg1xTbxFe2O4 Ferrites, J. Alloys Compd., 2012, 519, p 156–160.

    Article  CAS  Google Scholar 

  18. H. Farooq, M.R. Ahmad, Y. Jamil, A. Hafeez, Z. Mahmood and T. Mahmood, Structural and Dielectric Properties of Manganese Ferrite Nanoparticles, J. Basic Appl. Sci., 2012, 8, p 597–601.

    Article  CAS  Google Scholar 

  19. K. Zipare, J. Dhumal, S. Bandgar, V. Mathe and G. Shahane, Superparamagnetic Manganese Ferrite Nanoparticles: Synthesis and Magnetic Properties, J. Nanosci. Nanoeng., 2015, 1, p 178–182.

    Google Scholar 

  20. R. Wang, Q. Li, L. Cheng, H. Li, B. Wang, X.S. Zhao and P. Guo, Electrochemical Properties of Manganese Ferrite Based Supercapacitors in Aqueous Electrolyte: The Effect of Ionic Radius, Colloids Surf. A, 2014, 457, p 94–99.

    Article  CAS  Google Scholar 

  21. M. Atif, M. Nadeem, W. Khalid and Z. Ali, Structural, Magnetic and Impedance Spectroscopy Analysis of (0.7)CoFe2O4+(0.3)BaTiO3 Magnetoelectric Composite, Mater. Res. Bull., 2018, 107, p 171–179.

    Article  CAS  Google Scholar 

  22. H. Fu, Z. Du, W. Zou, H. Li and C. Zhang, Simple Fabrication of Strongly Coupled Cobalt Ferrite/Carbon Nanotubes Composite Based on Deoxygenation for Improving Lithium Storage, Carbon, 2013, 65, p 112–123.

    Article  CAS  Google Scholar 

  23. W. Jiang, Y. Liu, F. Li, J. Chu and K. Chen, Superparamagnetic Cobalt-Ferrite-Modified Carbon Nanotubes Using a Facile Method, Mater. Sci. Eng. B, 2010, 166, p 132–134.

    Article  CAS  Google Scholar 

  24. Z.D. Xu, L.Q. Ling, Y. Yun and Z.C. Rui, Synthesis and Characterization of Carbon Nanotubes Decorated with Strontium Ferrite Nanoparticles, Synth. Met., 2010, 160, p 866–870.

    Article  Google Scholar 

  25. L. Zhang, Y. Wang and Q.Q. Ni, Carbon Nanotube Template-Assisted Synthesis of Zinc Ferrite Nanochains, Mater. Chem. Phys., 2010, 124, p 1029–1033.

    Article  CAS  Google Scholar 

  26. Y. Teng, E. Liu, R. Ding, K. Liu, R. Liu, L. Wang, Z. Yang and H. Jiang, Bean Dregs-Based Activated Carbon/Copper Ion Supercapacitors, Electrochim. Acta, 2016, 194, p 394–404.

    Article  CAS  Google Scholar 

  27. M.W. Khan, S.U. Asif, K.M. Rehman, W. Uddin, Mubasher, S. Ahmed, E. Khan, A. Tagliaferro, P. Jagdale and M.F. Alam, The Electrical Behavior of Functionalized Multiwall Carbon Nanotubes Decorated with Polymer Nanocomposites, Phys. B Condens. Matter, 2019, 556, p 17–21.

    Article  CAS  Google Scholar 

  28. M. Mujahid, R.U. Khan, M. Mumtaz, Mubasher, S.A. Soomro and S. Ullah, NiFe2O4 Nanoparticles/MWCNTs Nanohybrid as Anode Material for Lithium-Ion Battery, Cer Int., 2019, 45, p 8486–8493.

    Article  CAS  Google Scholar 

  29. H. Xia, D. Zhu, Y. Fu and X. Wang, CoFe2O4-Graphene Nanocomposite as a High-Capacity Anode Material for Lithium-Ion Batteries, Electrochim. Acta, 2012, 83, p 166–174.

    Article  CAS  Google Scholar 

  30. M.A. Salam, M.A. Gabal and A.Y. Obaid, Preparation and Characterization of Magnetic Multi-walled Carbon Nanotubes/Ferrite Nanocomposite and Its Application for the Removal of Aniline from Aqueous Solution, Synth. Met., 2012, 161, p 2651–2658.

    Article  Google Scholar 

  31. L. Wang, L. Zhuo, H. Cheng, C. Zhang and F. Zhao, Porous Carbon Nanotubes Decorated with Nanosized Cobalt Ferrite as Anode Materials for High Performance Lithium-Ion Batteries, J. Power Sources, 2015, 283, p 289–299.

    Article  CAS  Google Scholar 

  32. Mubasher and M. Mumtaz, Nanocomposites of multi-walled carbon nanotubes/cobalt ferrite Nanoparticles: Synthesis, structural, dielectric and impedance spectroscopy, J. Alloys Compd., 2021, 866, p 158750.

    Article  CAS  Google Scholar 

  33. Z. Rahimi, H. Sarafraz, Gh. Alahyarizadeh and A.S. Shirani, Hydrothermal Synthesis of Magnetic CoFe2O4 Nanoparticles and CoFe2O4/MWCNTs Nanocomposites for U and Pb Removal from Aqueous Solutions, J. Radioanal. Nucl. Chem., 2018, 317, p 431–442.

    Article  CAS  Google Scholar 

  34. M. Arbatti, X. Shan and Z. Cheng, Ceramic-Polymer Composites with High Dielectric Constant, Adv. Mater., 2007, 19, p 1369–1372.

    Article  CAS  Google Scholar 

  35. S.T. Hussain, S.R. Gilani, S.D. Ali and H.S. Bhatti, Decoration of Carbon Nanotubes with Magnetic Ni1-xCoxFe2O4 Nanoparticles by Microemulsion Method, J. Alloys Compd., 2012, 544, p 99–104.

    Article  CAS  Google Scholar 

  36. D.Q. Yang, B. Hennequin and E. Sacher, XPS Demonstration of π-π Interaction between Benzyl Mercaptan and Multiwalled Carbon Nanotubes and their Use in the Adhesion of Pt Nanoparticles, Chem. Mater., 2006, 18, p 5033–5038.

    Article  CAS  Google Scholar 

  37. Y. Zhao, J. Li, C. Wu and L. Guan, A General Strategy for Synthesis of Metal Oxide Nanoparticles Attached on Carbon Nanomaterials, Nanoscale Res. Lett., 2011, 6, p 71.

    Article  Google Scholar 

  38. S.K. Pradhan, S. Sain and H. Dutta, Microstructure Characterization of Nanocrystalline Magnesium Ferrite Annealed at Elevated Temperatures by Rietveld Method, Int. Sch. Res. Netw. ISRN Ceram., 2011, 124, p 1–8.

    Google Scholar 

  39. K.M. Batoo, Study of Dielectric and Impedance Properties of Mn Ferrites, Phys. B, 2011, 406, p 382–387.

    Article  CAS  Google Scholar 

  40. Mubasher, M. Mumtaz, M. Hassan, L. Ali, Z. Ahmad, M. Awais Imtiaz, M. Fahad Aamir, A. Rehman and K. Nadeem, Comparative Study of Frequency-Dependent Dielectric Properties of Ferrites MFe2O4 (M = Co, Mg, Cr and Mn) Nanoparticles, Appl. Phys. A, 2020, 126, p 334.

    Article  CAS  Google Scholar 

  41. M. Gunay, H. Erdemi, A. Baykal, H. Sozeri and M.S. Toprak, Triethylene Glycol Stabilized MnFe2O4 Nanoparticle: Synthesis, Magnetic and Electrical Characterization, Mater. Res. Bull., 2013, 48, p 1057–1064.

    Article  CAS  Google Scholar 

  42. B. Bashir, A. Rahman, H. Sabeeh, M.A. Khan, M.F. Aboud, M.F. Warsi, I. Shakir, P.O. Agboola and M. Shahid, Copper Substituted Nickel Ferrite Nanoparticles Anchored onto the Graphene Sheets as Electrode Materials for Supercapacitors Fabrication, Ceram. Int., 2019, 45, p 6759–6766.

    Article  CAS  Google Scholar 

  43. G. Wang, D. Zhao, Y. Ma, Z. Zhang, H. Che, J. Mu, X. Zhang and Z. Zhang, Synthesis and Characterization of Polymer-Coated Manganese Ferrite Nanoparticles as Controlled Drug Deliver, Appl. Surf. Sci., 2018, 428, p 258–263.

    Article  CAS  Google Scholar 

  44. K.S. Rao, G. Choudary, K.H. Rao and Ch. Sujatha, Structural and Magnetic Properties of Ultrafine CoFe2O4 Nanoparticles, Procedia Mater. Sci., 2015, 10, p 19–27.

    Article  CAS  Google Scholar 

  45. C.G. Koops, On the Dispersion of Resistivity and Dielectric Constant of some Semiconductors at Audio Frequencies, Phys. Rev., 1951, 83, p 121–124.

    Article  CAS  Google Scholar 

  46. A. Parveen, H.M.N. Asghar, M. Khalid, Z.A. Gilani, S. Aslam, M. Saleem, F.A. Shaikh and J. Rehman, Dielectric, Impedance and Modulus Spectroscopic Studies of Co0.3Cd0.7Zn1.5xFe2xO4 Nanoparticles, Appl. Phys. A, 2019, 125, p 731–741.

    Article  Google Scholar 

  47. M. Shahbaz, I. Sadiq, M.M. Hussain, A.B. Javaid, M. Idrees, S. Hussain, F. Sadiq, S. Riaz, S. Naseem and H.M. Khan, Peculiar Magnetic Behavior and Structural, Electrical, Dielectric Properties of Substituted R-Type Hexagonal Ferrites, J. Magn. Magn. Mater., 2020, 499, p 166309.

    Article  CAS  Google Scholar 

  48. H. Chen, X. Fu, Q. An, B. Tang, S. Zhang, H. Yang, Y. Long, M. Harfouche, H. Wang and Y. Li, Determining the Quality Factor of Dielectric Ceramic Mixtures with Dielectric Constants in the Microwave Frequency Range, Sci. Rep., 2017, 7, p 14120–14141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mumtaz.

Ethics declarations

Conflict of interest

I also declare that authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubasher, Mumtaz, M. & Ali, M. Structural, Dielectric and Electric Modulus Studies of MnFe2O4/(MWCNTs)x Nanocomposites. J. of Materi Eng and Perform 30, 4494–4503 (2021). https://doi.org/10.1007/s11665-021-05721-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05721-4

Keywords

Navigation