Skip to main content
Log in

Structural, Dielectric, and Impedance Properties of MgFe2O4 Nanoparticles and Multi-walled Carbon Nanotubes Nanocomposites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Different concentrations of multi-walled carbon nanotubes (MWCNTs) were added in magnesium ferrite (MgFe2O4) nanoparticles prepared by co-precipitation method to obtain (MWCNTs)x/MgFe2O4; x = 0, 5, 10, 15, and 20 wt% nanocomposites. These nanocomposites were synthesized by ultra-sonication-assisted method along with toluene as a dispersive medium. These nanocomposites were characterized for their structural, compositional, and dielectric properties. The phase purity, average crystallite size, and crystal structure of these nanocomposites were characterized by Χ-ray diffraction. The X-rays density, measured density, porosity, and specific surface area were calculated by using standard relations. Fourier transform infrared spectroscopy was used to study different vibrational modes, and shape was visualized by scanning electron microscopy in these nanocomposites. The dielectric and impedance measurements of (MWCNTs)x/MgFe2O4 nanocomposites were carried out at room temperature by using LCR meter. The experimental results revealed improvement in the dielectric properties with the increased concentrations of MWCNTs. The decreasing trend in impedance parameters was observed with increased loadings of MWCNTs in these nanocomposites. The effects of grains and grain boundaries were determined from Cole–Cole plots between real and imaginary parts of impedance. Moreover, the improvement in dielectric properties gave us a clue that these prepared nanocomposites could be good for high-frequency devices and sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors declare that this research data is available when required.

References

  1. Moradmard, H., Shayesteh, S.F., Tohidi, P., Abbas, Z., Khaleghi, M.: Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloy. Compd. 650, 116–122 (2015)

    Article  Google Scholar 

  2. Sagayaraj, R., Aravazhi, S., Chandrasekaran, G.: Synthesis, spectroscopy, and magnetic characterizations of PVP-assisted nanoscale particle. J. Supercond. Novel Magn. 31, 3379–3386 (2018)

    Article  Google Scholar 

  3. Akhtar, M.J., Younas, M.: Structural and transport properties of nanocrystalline MnFe2O4 synthesized by co-precipitation method. Solid State Sci. 14, 1536–1542 (2012)

    Article  ADS  Google Scholar 

  4. Sagayaraj, R., Aravazhi, S., Chandrasekaran, G.: Effect of zinc content on structural, functional, morphological, resonance, thermal and magnetic properties of Co1-xZnxFe2O4/PVP nanocomposites. J. Inorg. Organomet. Polym. Mater. 29, 2252–2261 (2019)

    Article  Google Scholar 

  5. Sagayaraj, R., Aravazhi, S., Kumar, C.S., Kumar, S.S., Chandrasekaran, G.: Tuning of ferrites (CoxFe3‑xO4) nanoparticles by co‑precipitation technique SN. Appl. Sci. 1, 271 (2019)

  6. Sagayaraj, R., Dhineshkumar, T., Prakash, A., Aravazhi, S., Chandrasekaran, G., Jayarajan, D., Sebastian, S.: Fabrication, microstructure, morphological and magnetic properties of W-type ferrite by co-precipitation method: antibacterial activity. Chem. Phys. Lett. 759,137944 (2020)

  7. Reddy, M.P., Shakoor, R.A., Mohamed, A.M.A., Gupta, M., Huang, Q.: Effect of sintering temperature on the structural and magnetic properties of MgFe2O4 ceramics prepared by spark plasma sintering. Ceram. Int. 42, 4221–4227 (2016)

    Article  Google Scholar 

  8. Shen, Y., Wu, Y., Li, X., Zhao, Q., Hou, Y.: One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. Mater. Lett. 96, 85–88 (2013)

    Article  Google Scholar 

  9. Druc, A.C., Dumitrescu, A.M., Borhan, A.I., Nica, V., Iordan, A.R., Palamaru, M.N.: Optimization of synthesis conditions and the study of magnetic and dielectric properties for MgFe2O4 ferrite. Cent. Eur. J. Chem. 11, 1330–1342 (2013)

    Google Scholar 

  10. Franco, A., Jr., Silva, M.S.: High temperature magnetic properties of magnesium ferrite nanoparticles. J. Appl. Phys. 109, 07B505 (2011)

    Article  Google Scholar 

  11. Mo, N., Song, Y.Y., Patton, C.E.: High-field microwave effective linewidth in polycrystalline ferrites: physical origins and intrinsic limits. J. Appl. Phys. 97, 093901 (2005)

  12. Aliyan, N., Mirkazemi, S.M., Masoudpanah, S.M., Akbari, S.: The effect of post-calcination on cation distributions and magnetic properties of the coprecipitated MgFe2O4 nanoparticles. Appl. Phys. A 123, 446 (2017)

    Article  ADS  Google Scholar 

  13. Hussein, S.I., Elkady, A.S., Rashad, M.M., Mostafa, A.G., Megahid, R.M.: Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reaction. J. Magn. Magn. Mater. 379, 9–15 (2015)

    Article  ADS  Google Scholar 

  14. Sagayaraj, R., Aravazhi, S., Chandrasekaran, G.: (2021) Microstructure and magnetic properties of Cu0.5Co0.3Mo0.2Fe2O4 ferrite nanoparticles synthesized by coprecipitation method. Appl. Phys. A. 127, 502 (2021)

  15. Choodamani, C., Rudraswamy, B., Chandrappa, G.T.: Structural, electrical, and magnetic properties of Zn substituted magnesium ferrite. Ceram. Int. 42, 10565–10571 (2016)

    Article  Google Scholar 

  16. Thankachan, S., Xavier, S., Jacob, B., Mohammed, E.M.: A comparative study of structural, electrical and magnetic properties of magnesium ferrite nanoparticles synthesised by sol-gel and co-precipitation techniques. J. Exp. Nanosci. 8, 347–357 (2013)

    Article  Google Scholar 

  17. Mahato, D.K., Banerjee, S.: Dielectric characteristics of MgFe2O4 ferrite prepared by sol-gel auto-combustion method. Mater. Today Proceed. 4, 5525–5531 (2017)

    Article  Google Scholar 

  18. Aslibeiki, B., Varvaro, G., Peddis, D., Kameli, P.: Particle size, spin wave and surface effects on magnetic properties of MgFe2O4 nanoparticles. J. Magn. Magn. Mater. 422, 7–12 (2017)

    Article  ADS  Google Scholar 

  19. Heiba, Z.K., Mohamed, M.B.: Effect of magnesium deficiency on magnetic properties tuning and cation redistributions of magnesium ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 30, 786–796 (2019)

    Google Scholar 

  20. Naseri, M.G., Ara, M.H.M., Saion, E.B., Shaari, A.H.: Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 350, 141–147 (2014)

    Article  ADS  Google Scholar 

  21. Pal, M., Rakshit, R., Mandal, K.: Surface modification of MnFe2O4 nanoparticles to impart intrinsic multiple fluorescence and novel photocatalytic properties. ACS Appl. Mater. Interfaces. 6, 4903–4910 (2014)

    Article  Google Scholar 

  22. Sivakumar, N., Gnanakan, S.R.P., Karthikeyan, K., Amaresh, S., Yoon, W.S., Park, G.J., Lee, Y.S.: Nanostructured MgFe2O4 as anode materials for lithium-ion batteries. J. Alloy. Compd. 509, 7038–7041 (2011)

    Article  Google Scholar 

  23. Narsimulu, D., Rao, B.N., Satyanarayana, N., Srinadhu, E.S.: High capacity electrospun MgFe2O4–C composite nanofibers as an anode material for lithium ion batteries. Chem. Select. 3, 8010–8017 (2018)

    Google Scholar 

  24. Araújo, J.C.R., Barbosa, S.A., Souza, A.L.R., Iglesias, C.A.M., Xavier, J., Souza, P.B., Cid, C.P., Azevedo, S., da Silva, R.B., Correa, M.A., de Medeiros, S.N.: Tuning structural, magnetic, electrical, and dielectric properties of MgFe2O4 synthesized by sol-gel followed by heat treatment. J. Phys. Chem. Solids 154, 110051 (2021)

  25. Heidari, P., Masoudpanah, S.M.: A facial synthesis of MgFe2O4/RGO nanocomposite powders as a high performance microwave absorber. J. Alloys Compd. 834, 155166 (2020)

  26. Bashir, B., Rahman, A., Sabeeh, H., Khan, M.A., Aboud, M.F., Warsi, M.F., Shakir, I., Agboola, P.O., Shahid, M.: Copper substituted nickel ferrite nanoparticles anchored onto the graphene sheets as electrode materials for supercapacitors fabrication. Ceram. Int. 45, 6759–6766 (2019)

    Article  Google Scholar 

  27. Wang, L., Zhuo, L., Cheng, H., Zhang, C., Zhao, F.: Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high performance lithium-ion batteries. J. Power Sources 283, 289–299 (2015)

    Article  ADS  Google Scholar 

  28. Salam, M.A., Gabal, M.A., Obaid, A.Y.: Preparation and characterization of magnetic multi-walled carbon nanotubes/ferrite nanocomposite and its application for the removal of aniline from aqueous solution. Synth. Met. 161, 2651–2658 (2012)

    Article  Google Scholar 

  29. Hussain, S.T., Gilani, S.R., Ali, S.D., Bhatti, H.S.: Decoration of carbon nanotubes with magnetic Ni1-xCoxFe2O4 nanoparticles by microemulsion method. J. Alloy. Compd. 544, 99–104 (2012)

    Article  Google Scholar 

  30. Shen, Y., Lin, Y., Li, M., Nan, C.W.: High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv. Mater. 19, 1418–1422 (2007)

    Article  Google Scholar 

  31. Zhao, Y., Li, J., Wu, C., Guan, L.: A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials. Nanoscale Res. Lett. 6, 71 (2011)

    Article  ADS  Google Scholar 

  32. Mubasher, Mumtaz, M.: Nanocomposites of multi-walled carbon nanotubes/cobalt ferrite nanoparticles: synthesis, structural, dielectric and impedance spectroscopy. J. Alloys Compd. 866, 158750 (2021)

  33. Mubasher, Mumtaz, M., Ali, M.: Structural, dielectric and electric modulus studies of MnFe2O4/(MWCNTs)x nanocomposites. J. Mater. Eng. Perform. 1–10 (2021)

  34. Mubasher, Mumtaz, M., Hassan, M., Ullah, S., Ahmad, Z.: Nanohybrids of multi-walled carbon nanotubes and cobalt ferrite nanoparticles: High performance anode material for lithium-ion batteries. Carbon 171, 179–187 (2021)

  35. Sepahvand, R., Mohamadzade, R.: Synthesis and characterization of carbon nanotubes decorated with magnesium ferrite (MgFe2O4) nanoparticles by citrate-gel method. J. Sci. Islam. Repub. Iran 22, 177–182 (2011)

    Google Scholar 

  36. Sagayaraj, R., Jegadheeswari, M., Aravazhi, S., Chandrasekaran, G., Dhanalakshmi, A.: Structural, spectroscopic and magnetic study of nanocrystalline terbium–nickel ferrite by oxalate co‑precipitation method. Chem. Afr. 1–9 (2020)

  37. Mubasher, Mumtaz, M., Hassan, M., Ali, L., Ahmad, Z., Imtiaz, M. A., Aamir, M.F., Nadeem K.: Comparative study of frequency-dependent dielectric properties of ferrites MFe2O4 (M = Co, Mg, Cr and Mn) nanoparticles. Appl. Phys. A. 126, 334 (2020)

  38. Dagar, S., Hooda, A., Khasa, S.: Dielectric properties, complex impedance analysis and electrical properties of novel particulate composites of NBT-SrFe12O19. J. Mater. Sci. Mater. Electron. 31, 11609–11617 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mumtaz.

Ethics declarations

Ethical Approval

I declare that all authors have seen and approved the manuscript.

Consent for Publication

I declare that the paper is original and has not been submitted or is not being considered for publication elsewhere.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumtaz, M., Mubasher, Saeed, Z. et al. Structural, Dielectric, and Impedance Properties of MgFe2O4 Nanoparticles and Multi-walled Carbon Nanotubes Nanocomposites. J Supercond Nov Magn 35, 1693–1702 (2022). https://doi.org/10.1007/s10948-022-06212-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06212-w

Keywords

PACS Codes

Navigation