Skip to main content
Log in

Synthesis and Characterization of CoFe2O4/MWCNTs Nanocomposites and High-Frequency Analysis of Their Dielectric Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nanoparticles of CoFe2O4 were synthesized by chemical co-precipitation method. The CoFe2O4/MWCNT nanocomposites were synthesized with increasing contents of MWCNTs, i.e., 0.0, 2.0, 3.0, and 5.0% by weight via ultrasonication method in a dispersive medium using ortho-xylene. The synthesized cobalt ferrite nanoparticles and their nanocomposites were characterized by impedance analyzer, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and x-ray diffraction (XRD) techniques. The XRD indexed patterns confirmed the face-centered cubic structure of CoFe2O4/MWCNT nanocomposites. The average crystallite size in all the samples was in the range of 15 to 35 nm. The decorations of CoFe2O4 on MWCNTs were confirmed by SEM images. The FTIR results showed two vibrational bands. With the increasing contents of multi-walled carbon nanotubes in the cobalt ferrite/MWCNT nanocomposites, the dielectric properties were also enhanced. At 1 MHz, dielectric constant, dielectric loss, and tangent loss factor were increased from 26, 15.1, and 0.580 for pure cobalt ferrite to 47, 28.9, and 0.614 for loading of 5% MWCNTs, respectively. At 1 GHz, dielectric constant, dielectric loss, and tangent loss factor were increased from 11.6, 0.33, and 0.028 for pure cobalt ferrite to 19.4, 0.61, and 0.031 for loading of 5% MWCNTs, respectively. Such a huge increase in the dielectric properties of cobalt ferrite and multi-walled carbon nanocomposites exploited their applications at high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.J. Yoon et al., Multifunctional Nanoparticles Possessing a “Magnetic Motor Effect” for Drug or Gene Delivery, Angew. Chem. Int. Ed., 2005, 44(7), p 1068–1071

    Article  CAS  Google Scholar 

  2. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nanoscience and Technology: A Collection of Reviews from Nature Journals, R. Peter, Ed., World Scientific, Singapore, 2010, p 320–329

    Google Scholar 

  3. C. Murugesan, M. Perumal, and G. Chandrasekaran, Structural, Dielectric and Magnetic Properties of Cobalt Ferrite Prepared Using Auto Combustion and Ceramic Route, Physica B, 2014, 448, p 53–56

    Article  CAS  Google Scholar 

  4. Y. Kitamoto et al., Co Ferrite Films with Excellent Perpendicular Magnetic Anisotropy and High Coercivity Deposited at Low Temperature, J. Appl. Phys., 1999, 85(8), p 4708–4710

    Article  CAS  Google Scholar 

  5. M.H. Sousa et al., New Electric Double-Layered Magnetic Fluids Based on Copper, Nickel, Zinc Ferrite Nanostructures, J. Phys. Chem. B, 2001, 105(6), p 1168–1175

    Article  CAS  Google Scholar 

  6. D. Speliotis, Magnetic Recording Beyond the First 100 years, J. Magn. Magn. Mater., 1999, 193(1–3), p 29–35

    Article  CAS  Google Scholar 

  7. F. Mazaleyrat and L. Varga, Ferromagnetic Nanocomposites, J. Magn. Magn. Mater., 2000, 215, p 253–259

    Article  Google Scholar 

  8. J.-G. Lee, J.Y. Park, and C.S. Kim, Growth of Ultra-Fine Cobalt Ferrite Particles by a Sol–Gel Method and Their Magnetic Properties, J. Mater. Sci., 1998, 33(15), p 3965–3968

    Article  CAS  Google Scholar 

  9. H. Wu et al., Solvothermal Synthesis of Cobalt Ferrite Nanoparticles Loaded on Multiwalled Carbon Nanotubes for Magnetic Resonance Imaging and Drug Delivery, Acta Biomater., 2011, 7(9), p 3496–3504

    Article  CAS  Google Scholar 

  10. K.L. Routray, S. Saha, and D. Behera, Effect of CNTs Blending on the Structural, Dielectric and Magnetic Properties of Nanosized Cobalt Ferrite, Mater. Sci. Eng. B, 2017, 226, p 199–205

    Article  CAS  Google Scholar 

  11. A. Nikumbh et al., Structural, Electrical, Magnetic and Dielectric Properties of Rare-Earth Substituted Cobalt Ferrites Nanoparticles Synthesized by the Co-Precipitation Method, J. Magn. Magn. Mater., 2014, 355, p 201–209

    Article  CAS  Google Scholar 

  12. R. Melo et al., Magnetic Ferrites Synthesised Using the Microwave-Hydrothermal Method, J. Magn. Magn. Mater., 2015, 381, p 109–115

    Article  CAS  Google Scholar 

  13. B.H. Liu et al., Microstructural Evolution and Its Influence on the Magnetic Properties of CoFe2O4 Powders During Mechanical Milling, Phys. Rev. B, 2006, 74(18), p 184427

    Article  Google Scholar 

  14. S.H. Xiao et al., Low-Temperature Auto-Combustion Synthesis and Magnetic Properties of Cobalt Ferrite Nanopowder, Mater. Chem. Phys., 2007, 106(1), p 82–87

    Article  CAS  Google Scholar 

  15. C. Cannas et al., CoFe2O4 Nanocrystalline Powders Prepared by Citrate-Gel Methods: Synthesis, Structure and Magnetic Properties, J. Nanopart. Res., 2006, 8(2), p 255–267

    Article  CAS  Google Scholar 

  16. N. Moumen and M. Pileni, New Syntheses of Cobalt Ferrite Particles in the Range 2-5 nm: Comparison of the Magnetic Properties of the Nanosized Particles in Dispersed Fluid or in Powder Form, Chem. Mater., 1996, 8(5), p 1128–1134

    Article  CAS  Google Scholar 

  17. Y. Ahn et al., Magnetization and Mössbauer Study of Cobalt Ferrite Particles from Nanophase Cobalt Iron Carbonate, Mater. Lett., 2001, 50(1), p 47–52

    Article  CAS  Google Scholar 

  18. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354(6348), p 56

    Article  CAS  Google Scholar 

  19. M.J. Treacy, T. Ebbesen, and J. Gibson, Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes, Nature, 1996, 381(6584), p 678

    Article  CAS  Google Scholar 

  20. E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, 1997, 277(5334), p 1971–1975

    Article  CAS  Google Scholar 

  21. T. Ebbesen et al., Electrical Conductivity of Individual Carbon Nanotubes, Nature, 1996, 382(6586), p 54

    Article  CAS  Google Scholar 

  22. M.A. Salam, M.A. Gabal, and A.Y. Obaid, Preparation and Characterization of Magnetic Multi-Walled Carbon Nanotubes/Ferrite Nanocomposite and Its Application for the Removal of Aniline from Aqueous Solution, Synth. Met., 2012, 161(23–24), p 2651–2658

    Article  Google Scholar 

  23. Z.G. Özdemir et al., Super-Capacitive Behavior of Carbon Nano Tube Doped 11-(4-cyanobiphenyl-4-oxy) Undecan-1-ol, J. Mol. Liq., 2015, 211, p 442–447

    Article  Google Scholar 

  24. A.A. Ali et al., MWCNTs/Carbon Nano Fibril Composite Papers for Fuel Cell and Super Capacitor Applications, J. Electrostat., 2015, 73, p 12–18

    Article  CAS  Google Scholar 

  25. R. Kumar et al., Graphene-Wrapped and Cobalt Oxide-Intercalated Hybrid for Extremely Durable Super-Capacitor with Ultrahigh Energy and Power Densities, Carbon, 2014, 79, p 192–202

    Article  CAS  Google Scholar 

  26. Y. Liu et al., EMI, Shielding Performance of Nanocomposites with MWCNTs, Nanosized Fe3O4 and Fe, Compos. B Eng., 2014, 63, p 34–40

    Article  CAS  Google Scholar 

  27. L. Tan et al., Removal of Uranium (VI) Ions from Aqueous Solution by Magnetic Cobalt Ferrite/Multiwalled Carbon Nanotubes Composites, Chem. Eng. J., 2015, 273, p 307–315

    Article  CAS  Google Scholar 

  28. A. Ghasemi, The Role of Multi-Walled Carbon Nanotubes on the Magnetic and Reflection Loss Characteristics of Substituted Strontium Ferrite Nanoparticles, J. Magn. Magn. Mater., 2013, 330, p 163–168

    Article  CAS  Google Scholar 

  29. A. Verma, A. Saxena, and D. Dube, Microwave Permittivity and Permeability of Ferrite–Polymer Thick Films, J. Magn. Magn. Mater., 2003, 263(1–2), p 228–234

    Article  CAS  Google Scholar 

  30. S.T. Hussain et al., Decoration of Carbon Nanotubes with Magnetic Ni1−xCoxFe2O4 Nanoparticles by Microemulsion Method, J. Alloys Compd., 2012, 544, p 99–104

    Article  CAS  Google Scholar 

  31. P. Scherrer, Determination of the Size and Internal Structure of Colloidal Particles Using X-Rays, Nachr. Ges. Wiss. Göttingen, 1918, 2, p 98–100

    Google Scholar 

  32. J.H. Lehman et al., Evaluating the Characteristics of Multiwall Carbon Nanotubes, Carbon, 2011, 49(8), p 2581–2602

    Article  CAS  Google Scholar 

  33. S.A. Soomro et al., Dielectric Properties Evaluation of NiFe2O4/MWCNTs Nanohybrid for Microwave Applications Prepared Via Novel One Step Synthesis, Ceram. Int., 2017, 43(5), p 4090–4095

    Article  CAS  Google Scholar 

  34. R. Waldron, Infrared Spectra of Ferrites, Phys. Rev., 1955, 99(6), p 1727

    Article  CAS  Google Scholar 

  35. Q. Zhang et al., Synthesis and Characterization of Carbon Nanotubes Decorated with Manganese–Zinc Ferrite Nanospheres, Mater. Chem. Phys., 2009, 116(2–3), p 658–662

    Article  CAS  Google Scholar 

  36. C. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies, Phys. Rev., 1951, 83(1), p 121

    Article  CAS  Google Scholar 

  37. H. Kumar et al., Dielectric Behaviour of Cobalt Ferrite Nanoparticles, Int. J. Electr. Electron. Eng., 2013, 2, p 59–66

    Google Scholar 

  38. X.-B. Zhou et al., Preparation of Nanocrystalline-Coated Carbon Nanotube/Ni0.5Zn0.5Fe2O4 Composite with Excellent Electromagnetic Property as Microwave Absorber, J. Phys. D Appl. Phys., 2013, 46(14), p 145002

    Article  Google Scholar 

  39. M. George et al., Finite Size Effects on the Electrical Properties of Sol–Gel Synthesized CoFe2O4 Powders: Deviation from Maxwell–Wagner Theory and Evidence of Surface Polarization Effects, J. Phys. D Appl. Phys., 2007, 40(6), p 1593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National University of Sciences and Technology (NUST), Islamabad, for providing us funds for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latif Ullah Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, L.U., Younas, M., Khan, S.U. et al. Synthesis and Characterization of CoFe2O4/MWCNTs Nanocomposites and High-Frequency Analysis of Their Dielectric Properties. J. of Materi Eng and Perform 29, 251–258 (2020). https://doi.org/10.1007/s11665-020-04572-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04572-9

Keywords

Navigation