Skip to main content
Log in

Strengthening Mechanisms in Al3Zr-Reinforced Aluminum Composite Prepared by Ultrasonic Assisted Casting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, Al3Zr particles were formed in situ by a reaction between hexafluorozirconate (K2ZrF6) and molten aluminum alloy. The aluminum melt with salt addition was ultrasonically stirred to achieve better dispersion of the particles and refine the cast microstructure. Transmission electron microscopy, x-ray diffraction and scanning electron microscopy were used to characterize the in situ composites. The microstructure was refined due to nucleation of uniformly dispersed Al3Zr particles during melting. The dispersion of Al3Zr particles in the aluminum matrix significantly improved hardness, yield strength, ductility and ultimate tensile strength. Theoretical analysis of the strengthening mechanism revealed that thermal mismatch strengthening is the major strengthening mechanism in these composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Kaczmar, K. Pietrzak and W. Wlosinski, The Production and Application of Metal Matrix Composite Materials, J. Mater. Process. Technol., 2000, 106, p 58–67.

    Article  Google Scholar 

  2. M.A. Taha, Practicalization of Cast Metal Matrix Composites (MMCCs), Mater. Des., 2001, 22, p 431–441.

    Article  CAS  Google Scholar 

  3. S.L. Pramod, S.R. Bakshi and B.S. Murty, Aluminum-Based Cast In Situ Composites: A Review, J. Mater. Eng. Perform., 2015, 24, p 2185–2207.

    Article  CAS  Google Scholar 

  4. A. Heidarzadeh, M. Emamy, A. Rahimzadeh, R. Soufi, D. Sohrabi Baba Heidary and S. Nasibi, The Effect of Copper Addition on the Fluidity and Viscosity of an Al-Mg-Si Alloy, J. Mater. Eng. Perform., 2014, 23, p 469–476.

    Article  CAS  Google Scholar 

  5. J.V. Wood, P. Davies and J.L.F. Kellie, Properties of Reactively Cast Aluminium-TiB2 Alloys, Mater. Sci. Technol., 1993, 9, p 833–840.

    Article  CAS  Google Scholar 

  6. S.H. Hong and K.H. Chung, Effects of Vacuum Hot Pressing Parameters on the Tensile Properties and Microstructures of SiC-2124 Al Composites, Mater. Sci. Eng. A, 1995, 194, p 165–170.

    Article  Google Scholar 

  7. C.F. Feng and L. Froyen, Formation of Al3Ti and Al2O3 from an Al–TiO2 System for Preparing In-Situ Aluminium Matrix Composites, Compos. Part A Appl. Sci. Manuf., 2000, 31, p 385–390.

    Article  Google Scholar 

  8. H. Nakata, T. Choh and N. Kanetake, Fabrication and Mechanical Properties of In Situ Formed Carbide Particulate Reinforced Aluminium Composite, J. Mater. Sci., 1995, 30, p 1719–1727.

    Article  CAS  Google Scholar 

  9. R. Mitra, W.A. Chiou, M.E. Fine and J.R. Weertman, Interfaces in As-Extruded XD Al/TiC and Al/TiB2 Metal Matrix Composites, J. Mater. Res., 1993, 8, p 2380–2392.

    Article  CAS  Google Scholar 

  10. J. Zhu, W. Jiang, G. Li, F. Guan, Y. Yu and Z. Fan, Microstructure and Mechanical Properties of SiCnp/Al6082 Aluminum Matrix Composites Prepared by Squeeze Casting Combined with Stir Casting, J. Mater. Process. Technol., 2020, 283, p 116699.

    Article  CAS  Google Scholar 

  11. I. Dinaharan, G. Ashok Kumar, S.J. Vijay and N. Murugan, Development of Al3Ti and Al3Zr Intermetallic Particulate Reinforced Aluminum Alloy AA6061 In Situ Composites Using Friction Stir Processing, Mater. Des., 2014, 63, p 213–222.

    Article  CAS  Google Scholar 

  12. R.A. Varin, Intermetallic-Reinforced Light-Metal Matrix In-Situ Composites, Metall. Mater. Trans. A., 2002, 33, p 193–201.

    Article  Google Scholar 

  13. H. Arik, Production and Characterization of In Situ Al4C3Reinforced Aluminum-Based Composite Produced by Mechanical Alloying Technique, Mater. Des., 2004, 25, p 31–40.

    Article  CAS  Google Scholar 

  14. C.J. Hsu, P.W. Kao and N.J. Ho, Ultrafine-Grained Al-Al2Cu Composite Produced In Situ by Friction Stir Processing, Scr. Mater., 2005, 53, p 341–345.

    Article  CAS  Google Scholar 

  15. L. Li, Y. Zhang, C. Esling, H. Jiang, Z. Zhao, Y. Zuo and J. Cui, Crystallographic Features of the Primary Al3Zr Phase in As-Cast Al-1.36 wt% Zr Alloy, J. Cryst. Growth., 2011, 316, p 172–176.

    Article  CAS  Google Scholar 

  16. M. Zedalis, M. Ghate and M. Fine, Elastic Moduli of Al3Zr, Scr. Metall., 1985, 19, p 647–650.

    Article  CAS  Google Scholar 

  17. G. Gautam and A. Mohan, Wear and Friction of AA5052-Al3Zr In Situ Composites Synthesized by Direct Melt Reaction, J. Tribol., 2015, 138, p 021602.

    Article  Google Scholar 

  18. Y. Tao Zhao, S. Li Zhang, G. Chen, X. Nong Cheng and Q. Xun Dai, Dynamics Responses of the In Situ Magnetochemistry Reaction for Al-Zr(CO3)2 System, J. Alloys Compd., 2008, 457, p 164–170.

    Article  Google Scholar 

  19. X. Kai, K. Tian, C. Wang, L. Jiao, G. Chen and Y. Zhao, Effects of Ultrasonic Vibration on the Microstructure and Tensile Properties of the Nano ZrB2/2024Al Composites Synthesized by Direct Melt Reaction, J. Alloys Compd., 2016, 668, p 121–127.

    Article  CAS  Google Scholar 

  20. Y.T. Zhao, S.L. Zhang, G. Chen, X.N. Cheng and C.Q. Wang, In Situ (Al2O3 + Al3Zr)np/Al Nanocomposites Synthesized by Magneto-Chemical Melt Reaction, Compos. Sci. Technol., 2008, 68, p 1463–1470.

    Article  CAS  Google Scholar 

  21. S. Shimizu, H.T. Fujii, Y.S. Sato, H. Kokawa, M.R. Sriraman and S.S. Babu, Mechanism of Weld Formation During Very-High-Power Ultrasonic Additive Manufacturing of Al Alloy 6061, Acta Mater., 2014, 74, p 234–243.

    Article  CAS  Google Scholar 

  22. S.R. Yu, H.K. Feng, Y.L. Li and L.Y. Gong, Study on the Properties of Al-23%Si Alloy Treated by Ultrasonic Wave, J. Alloys Compd., 2009, 484, p 360–364.

    Article  CAS  Google Scholar 

  23. J. Zhao, K. Yu, X. Xue, D. Mao and J. Li, Effects of Ultrasonic Treatment on the Tensile Properties and Microstructure of Twin Roll Casting Mg-3%Al-1%Zn-0.8%Ce-0.3%Mn (wt%) Alloy Strips, J. Alloys Compd., 2011, 509, p 8607–8613.

    Article  CAS  Google Scholar 

  24. S. Jia, D. Zhang and L. Nastac, Experimental and Numerical Analysis of the 6061-Based Nanocomposites Fabricated Via Ultrasonic Processing, J. Mater. Eng. Perform., 2015, 24, p 2225–2233.

    Article  CAS  Google Scholar 

  25. Y. Tsunekawa, H. Suzuki and Y. Genma, Application of Ultrasonic Vibration to In Situ MMC Process by Electromagnetic Melt Stirring, Mater. Des., 2001, 22, p 467–472.

    Article  CAS  Google Scholar 

  26. Z. Liu, Q. Han and J. Li, Fabrication of In Situ Al3Ti/Al Composites by Using Ultrasound Assisted Direct Reaction Between solid Ti Powders and Liquid Al, Powder Technol., 2013, 247, p 55–59.

    Article  CAS  Google Scholar 

  27. Z. Liu, Q. Han and J. Li, Ultrasound Assisted In Situ Technique for the Synthesis of Particulate Reinforced Aluminum Matrix Composites, Compos. Part B Eng., 2011, 42, p 2080–2084.

    Article  Google Scholar 

  28. Q. Gao, S. Wu, S. Lü, X. Xiong, R. Du and P. An, Effects of Ultrasonic Vibration Treatment on Particles Distribution of TiB2 Particles Reinforced Aluminum Composites, Mater. Sci. Eng. A, 2017, 680, p 437–443.

    Article  CAS  Google Scholar 

  29. H.M. Lee, Design of Al3(Ti, V, Zr) systems Through Phase Stability Calculations, Mater. Sci. Eng. A, 1992, 152, p 26–30.

    Article  Google Scholar 

  30. H. Puga, J. Barbosa, J.C. Teixeira and M. Prokic, A New Approach to Ultrasonic Degassing to Improve the Mechanical Properties of Aluminum Alloys, J. Mater. Eng. Perform., 2014, 23, p 3736–3744.

    Article  CAS  Google Scholar 

  31. R. Gupta, G.P. Chaudhari and B.S.S. Daniel, Strengthening Mechanisms in Ultrasonically Processed Aluminium Matrix Composite with In-Situ Al3Ti by Salt Addition, Compos. Part B Eng., 2018, 140, p 27–34.

    Article  CAS  Google Scholar 

  32. G.I. Eskin and D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts, 2nd ed. CRC Press, Boca Raton, 2015.

    Google Scholar 

  33. J. Li, T. Momono, Y. Tayu and Y. Fu, Application of Ultrasonic Treating to Degassing of Metal Ingots, Mater. Lett., 2008, 62, p 4152–4154.

    Article  CAS  Google Scholar 

  34. Z. Liu, M. Rakita, W. Xu, X. Wang and Q. Han, Ultrasound Assisted Salts-Metal Reaction for Synthesizing TiB2 Particles at Low Temperature, Chem. Eng. J., 2015, 263, p 317–324.

    Article  CAS  Google Scholar 

  35. G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts, Gordon & Breach, Amsterdam, 1998.

    Book  Google Scholar 

  36. S. Tjong, Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites, Mater. Sci. Eng. R Rep., 2000, 29, p 49–113.

    Article  Google Scholar 

  37. I. Dinaharan, G.A. Kumar, S.J. Vijay and N. Murugan, Development of Al3Ti and Al3Zr Intermetallic Particulate Reinforced Aluminum Alloy AA6061 In Situ Composites Using Friction Stir Processing, J. Mater., 2014, 63, p 213–222.

    Article  CAS  Google Scholar 

  38. F. Wang, D. Eskin, T. Connolley and J. Mi, Influence of Ultrasonic Treatment on Formation of Primary Al3Zr in Al-0.4Zr Alloy, Trans. Nonferrous Met. Soc. China, 2017, 27, p 977–985.

    Article  CAS  Google Scholar 

  39. M. Qian, A. Ramirez and A. Das, Ultrasonic Refinement of Magnesium by Cavitation: Clarifying the Role of Wall Crystals, J. Cryst. Growth, 2009, 311, p 3708–3715.

    Article  CAS  Google Scholar 

  40. Y. Zhao, S. Zhang, G. Chen and X. Cheng, Effects of Molten Temperature on the Morphologies of In Situ Al3Zr and ZrB2 Particles and Wear Properties of (Al3Zr + ZrB2)/Al Composites, Mater. Sci. Eng. A, 2007, 457, p 156–161.

    Article  Google Scholar 

  41. Z. Liu, M. Rakita, X. Wang, W. Xu and Q. Han, In Situ Formed Al3Ti Particles in Al Alloy Matrix and Their Effects on the Microstructure and Mechanical Properties of 7075 Alloy, J. Mater. Res., 2014, 29, p 1354–1361.

    Article  CAS  Google Scholar 

  42. T.V. Atamanenko, D.G. Eskin, M. Sluiter and L. Katgerman, On the Mechanism of Grain Refinement in Al-Zr-Ti Alloys, J. Alloys Compd., 2011, 509, p 57–60.

    Article  CAS  Google Scholar 

  43. G.K. Sigworth, The Grain Refining of Aluminum and Phase Relationships in the Al-Ti-B System, Metall. Trans. A., 1984, 15, p 277–282.

    Article  Google Scholar 

  44. C.S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-Gohari, P.K. Rohatgi and K. Cho, Prediction Models for the Yield Strength of Particle-Reinforced Unimodal Pure Magnesium (Mg) Metal Matrix Nanocomposites (MMNCs), J. Mater. Sci., 2013, 48, p 4191–4204.

    Article  CAS  Google Scholar 

  45. C.S. Ramesh, S. Pramod and R. Keshavamurthy, A Study on Microstructure and Mechanical Properties of Al 6061-TiB2 In-Situ Composites, Mater. Sci. Eng. A, 2011, 528, p 4125–4132.

    Article  Google Scholar 

  46. C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa and A. Ahmed, Microstructure and Mechanical Properties of Ni-P Coated Si3N4 Reinforced Al6061 Composites, Mater. Sci. Eng. A, 2009, 502, p 99–106.

    Article  Google Scholar 

  47. A. Khandelwal, K. Mani, N. Srivastava, R. Gupta and G.P. Chaudhari, Mechanical Behavior of AZ31/Al2O3 Magnesium Alloy Nanocomposites Prepared Using Ultrasound Assisted Stir Casting, Compos. Part B Eng., 2017, 123, p 64–73.

    Article  CAS  Google Scholar 

  48. D. Sameer Kumar, K.N.S. Suman, C. Tara Sasanka, K. Ravindra, P. Poddar and S.B. Venkata Siva, Microstructure, Mechanical Response and Fractography of AZ91E/Al2O3(p) Nano Composite Fabricated by semi Solid Stir Casting Method, J. Magnes. Alloy, 2017, 5, p 48–55.

    Article  Google Scholar 

  49. M.O. Lai, Y. Su, H.L. Teo and C.F. Feng, In Situ TiB 2 Reinforced Al Alloy Composites, Acta Mater., 2001, 45, p 1017–1023.

    Google Scholar 

  50. N. Kumar, R.K. Gautam and S. Mohan, In-Situ Development of ZrB2 Particles and Their Effect on Microstructure and Mechanical Properties of AA5052 Metal-Matrix Composites, Mater. Des., 2015, 80, p 129–136.

    Article  CAS  Google Scholar 

  51. N. Srivastava and G.P. Chaudhari, Strengthening in Al Alloy Nano Composites Fabricated by Ultrasound Assisted Solidification Technique, Mater. Sci. Eng. A., 2016, 651, p 241–247.

    Article  CAS  Google Scholar 

  52. G. Gautam, N. Kumar, A. Mohan, R.K. Gautam and S. Mohan, Strengthening Mechanisms of (Al3Zrmp+ ZrB2np)/AA5052 Hybrid Composites, J. Compos. Mater., 2016, 50, p 4123–4133.

    Article  CAS  Google Scholar 

  53. M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma and H. Wang, Mechanical Properties of In-Situ TiB2/A356 Composites, Mater. Sci. Eng. A, 2014, 590, p 246–254.

    Article  CAS  Google Scholar 

  54. W. Jiang, Z. Fan, Y. Dai and C. Li, Effects of Rare Earth Elements Addition on Microstructures, Tensile Properties and Fractography of A357 Alloy, Mater. Sci. Eng. A, 2014, 597, p 237–244.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. S. Daniel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Daniel, B.S.S. Strengthening Mechanisms in Al3Zr-Reinforced Aluminum Composite Prepared by Ultrasonic Assisted Casting. J. of Materi Eng and Perform 30, 2504–2513 (2021). https://doi.org/10.1007/s11665-021-05558-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05558-x

Keywords

Navigation