Skip to main content
Log in

Development of Heat-Resistant Composites Based on Al-Mg-Si Alloy Mechanically Alloyed with Aluminide Particles

  • Powder-based Functional Materials for Extreme Environments: Processing and Characterization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Zr and Ti are important alloying elements for heat-resistant aluminum alloys due to the formation of the L12 aluminide phases which have anti-recrystallization and hardening effects. However, due to the low solubility of transition metals in aluminum, the concentration of aluminide dispersoids is small, and this limits their strengthening potential. In this work, aluminum was, for the first time to our knowledge, mechanically alloyed with additions of pre-synthesized Al3Ti and Al3Zr L12 strengthening particles (2.5 vol.%). The aim of this work was to compare the effects of Al3Ti and Al3Zr additives on the microstructure and strengthening of the test AA6063 alloy. Powders of alloy and aluminides were processed via planetary ball milling for 30 h. The composite granules were compacted by hot pressing at 400°C and 500°C. It was shown that addition of 1 wt.% Cu during milling leads to an abrupt increase in the microhardness of the alloy from 200 HV to 300 HV. The composites exhibited fine nanocrystalline microstructure consisting of aluminum crystallites about 100 nm in size, crushed intermetallic particles ranging from 1.5 μm to several dozens of nanometers, and secondary precipitates. The ultimate compressive strength at room temperature exceeds 900 MPa, and at 300°C it is 242–289 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Czerwinski, Materials. https://doi.org/10.3390/ma13153441 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. R.S. Rana, R. Purohit, and S. Das, Int. J. Sci. Res. Pub. 2, 1 (2012).

    Google Scholar 

  3. K.E. Knipling, D.C. Dunand, and D.N. Seidman, Z. Metallkd. https://doi.org/10.3139/146.101249 (2006).

    Article  Google Scholar 

  4. L. Cui, K. Liu, Z. Zhang, and X.-G. Chen, J. Mater. Sci. https://doi.org/10.1007/s10853-023-08728-5 (2023).

    Article  Google Scholar 

  5. A.M.A. Mohamed, M.F. Ibrahim, Y. Zedan, E. Samuel, A.M. Samuel, and F.H. Samuel, Int. J. Metalcast. https://doi.org/10.1007/s40962-022-00808-7 (2023).

    Article  Google Scholar 

  6. S. Mondol, U. Bansal, M.P. Singh, S. Dixit, A. Mandal, A. Paul, and K. Chattopadhyay, Materialia. https://doi.org/10.1016/j.mtla.2022.101449 (2022).

    Article  Google Scholar 

  7. S. Pan, F. Qian, C. Li, Z. Wang, and Y. Li, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.141460 (2021).

    Article  Google Scholar 

  8. Y. Fu, Y. Zhuang, X. Xu, J. Zhang, Z. Liu, B. Zhang, X. Jin, R. Zhang, P. Zhang, and H. Wei, Mater. Res. Express. https://doi.org/10.1088/2053-1591/ab41b0 (2019).

    Article  Google Scholar 

  9. K. Hu, C. Zou, H. Wang, and Z. Wei, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2023.169860 (2023).

    Article  Google Scholar 

  10. J.S. Benjamin and T.E. Volin, Metall. Trans. https://doi.org/10.1007/BF02644161 (1974).

    Article  Google Scholar 

  11. P.S. Gilman and J.S. Benjamin, Annu. Rev. Mater. Sci. https://doi.org/10.1146/annurev.ms.13.080183.001431 (1983).

    Article  Google Scholar 

  12. C. Suryanarayana, Prog. Mater. Sci. https://doi.org/10.1016/S0079-6425(99)00010-9 (2001).

    Article  Google Scholar 

  13. C. Suryanarayana, T. Klassen, and E. Ivanov, J. Mater. Sci. https://doi.org/10.1007/s10853-011-5287-0 (2011).

    Article  Google Scholar 

  14. D.L. Zhang, Prog. Mater. Sci. https://doi.org/10.1016/S0079-6425(03)00034-3 (2004).

    Article  Google Scholar 

  15. C. Shuai, C. He, S. Peng, F. Qi, G. Wang, A. Min, W. Yang, and W. Wang, Adv. Eng. Mater. https://doi.org/10.1002/adem.202001098 (2021).

    Article  Google Scholar 

  16. F.H. Froes, Y.-W. Kim, and S. Krishnamurthy, Mater. Sci. Eng. A. https://doi.org/10.1016/0921-5093(89)90082-8 (1989).

    Article  Google Scholar 

  17. S.S. Nayak, S.K. Pabi, and B.S. Murty, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2009.10.274 (2010).

    Article  Google Scholar 

  18. F.G. Cuevas, J.M. Montes, J. Cintas, and J.M. Gallardo, Powder Metall. https://doi.org/10.1179/174329005X78121 (2005).

    Article  Google Scholar 

  19. F. Zhang, L. Lu, and M.O. Lai, J. Alloys Compd. https://doi.org/10.1016/S0925-8388(99)00568-X (2000).

    Article  Google Scholar 

  20. V.M.S. Muthaiah and S. Mula, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.07.038 (2016).

    Article  Google Scholar 

  21. B. Srinivasarao, C. Suryanarayana, K. Oh-ishi, and K. Hono, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2009.04.032 (2009).

    Article  Google Scholar 

  22. A.S. Prosviryakov, K.D. Shcherbachev, and NYu. Tabachkova, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2014.11.048 (2015).

    Article  Google Scholar 

  23. A.S. Prosviryakov and K.D. Shcherbachev, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2017.12.069 (2018).

    Article  Google Scholar 

  24. E.V. Shelekhov and T.A. Sviridova, Met. Sci. Heat Treat. https://doi.org/10.1007/BF02471306 (2000).

    Article  Google Scholar 

  25. G.K. Williamson and W.H. Hall, Acta Metall. https://doi.org/10.1016/0001-6160(53)90006-6 (1953).

    Article  Google Scholar 

  26. G.K. Williamson and R.E. Smallman, Philos. Mag. https://doi.org/10.1080/14786435608238074 (1956).

    Article  Google Scholar 

  27. A.S. Prosviryakov, A.I. Bazlov, and I.S. Loginova, Trans. Nonferrous Met. Soc. China. https://doi.org/10.1016/S1003-6326(20)65284-0 (2020).

    Article  Google Scholar 

  28. Y. Zhao, B. Song, J. Pei, C. Jia, B. Li, and G. Linlin, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2013.05.006 (2013).

    Article  Google Scholar 

  29. M. Das, G. Das, M. Ghosh, M. Wegner, V. Rajnikant, S. GhoshChowdhury, and T.K. Pal, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2012.08.040 (2012).

    Article  Google Scholar 

  30. D.G. Morris, Rev. Metal. https://doi.org/10.3989/revmetalm.1008 (2010).

    Article  Google Scholar 

  31. Z. Zhang and D.L. Chen, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2006.10.184 (2008).

    Article  Google Scholar 

  32. G. Zhu, Y. Dai, D. Shu, J. Wang, and B. Sun, J. Phys. Condens. Matter. https://doi.org/10.1088/0953-8984/21/41/415503 (2009).

    Article  PubMed  Google Scholar 

  33. A.S. Prosviryakov, K.D. Shcherbachev, and N.Y. Tabachkova, Mater Charact. https://doi.org/10.1016/j.matchar.2016.11.028 (2017).

    Article  Google Scholar 

  34. Z. Guo, G. Zhao, and X.-G. Chen, Mater Charact. https://doi.org/10.1016/j.matchar.2015.02.016 (2015).

    Article  Google Scholar 

  35. H.V. Swygenhoven and J.R. Weertman, Mater. Today. https://doi.org/10.1016/S1369-7021(06)71494-8 (2006).

    Article  Google Scholar 

  36. A. Mohammadi, N.A. Enikeev, MYu. Murashkin, M. Arita, and K. Edalati, J. Mater. Sci. Technol. https://doi.org/10.1016/j.jmst.2021.01.096 (2021).

    Article  Google Scholar 

  37. M. Huang, Z. Li, and J. Tong, Int. J. Plast. https://doi.org/10.1016/j.ijplas.2014.06.002 (2014).

    Article  Google Scholar 

  38. A. Prosviryakov and A. Bazlov, Appl. Sci. https://doi.org/10.3390/app13021104 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

SEM, EDS and XRD studies were funded by the Ministry of Science and Higher Education in the framework of the State Task to MISIS University, project code FSME-2023-0005. TEM investigations were carried out on equipment of the Center for Collective Use "Materials Science and Metallurgy" (NUST MISIS) with the financial support of the Strategic Academic Leadership Program “Priority 2030” (project K2-2022-001). The authors are grateful to N. Yu Tabachkova for TEM studies and A.V. Posdniakov for fractographic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Prosviryakov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosviryakov, A.S., Bazlov, A.I. & Mikhaylovskaya, A.V. Development of Heat-Resistant Composites Based on Al-Mg-Si Alloy Mechanically Alloyed with Aluminide Particles. JOM 76, 1306–1318 (2024). https://doi.org/10.1007/s11837-023-06278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06278-4

Navigation