Skip to main content

Advertisement

Log in

Effects of Compositional Variation on the Thermal Stability of \(\theta\)′-Al2Cu Precipitates and Elevated-Temperature Strengths in Al-Cu 206 Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study explored the effects of compositional variation of Al-Cu 206 alloys (Si and Mn concentrations, 0.12 versus 0.3 wt.% each) on the precipitation and thermal stability of θ′ precipitates, and the associated elevated-temperature strengths during long-term thermal exposure at 300 °C. The results indicated that both alloys under the T7 condition exhibited comparable yield strengths at 20 and 300 °C, which were predominantly controlled by θ′ precipitates. Upon exposure at 300 °C for up to 1000 h, the θ′ precipitates in the alloy with low Si and Mn concentrations remained stable and resistant to transformation into the equilibrium θ phase. The coarsening of θ′ proceeded through both lengthening and thickening, resulting in the continuing decline in YS at 300 °C from 93 MPa after 300 °C/100 h to 78 MPa after 300 °C/1000 h. Conversely, the θ′ precipitates in the alloy with high Si and Mn concentrations underwent almost complete transformation into deleterious θ after only 100 h at 300 °C, thus imparting a significantly lower YS of 69 MPa after 300 °C/100 h. The possible sources of these microstructure and property changes with the compositional variation were explored. This study has implications for strategic design of Al-Cu alloys for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Dorin, M. Ramajayam, J. Lamb, and T. Langan, Effect of Sc and Zr Additions on the Microstructure/Strength of Al-Cu Binary Alloys, Mater. Sci. Eng., A, 2017, 707, p 58–64

    Article  CAS  Google Scholar 

  2. M. Javidani and D. Larouche, Application of Cast Al-Si Alloys in Internal Combustion Engine Components, Int. Mater. Rev., 2014, 59(3), p 132–158

    Article  CAS  Google Scholar 

  3. J. Rakhmonov, G. Timelli, and F. Bonollo, The Effect of Transition Elements on High-Temperature Mechanical Properties of AlSi Foundry AlloysA Review, Adv. Eng. Mater., 2016, 18(7), p 1096–1105

    Article  CAS  Google Scholar 

  4. A.R. Farkoosh and M. Pekguleryuz, Enhanced Mechanical Properties of an Al-Si-Cu-Mg Alloy at 300 °C: Effects of Mg and the Q-Precipitate Phase, Mater. Sci. Eng. A, 2015, 621, p 277–286

    Article  CAS  Google Scholar 

  5. L. Jin, K. Liu, and X.G. Chen, Evolution of Dispersoids and Their Effects on Elevated-Temperature Strength and Creep Resistance in Al-Si-Cu 319 Cast Alloys with Mn and Mo Additions, Mater. Sci. Eng., A, 2020, 770, p 138554

    Article  CAS  Google Scholar 

  6. S. Bai, X.W. Zhou, Z.Y. Liu, P. Xia, M. Liu, and S.M. Zeng, Effects of Ag Variations on the Microstructures and Mechanical Properties of Al-Cu-Mg Alloys at Elevated Temperatures, Mater. Sci. Eng. A, 2014, 611, p 69–76

    Article  CAS  Google Scholar 

  7. A. Biswas, D. Sen, S.K. Sarkar, S. Sarita, S. Mazumder, and D.N. Seidman, Temporal Evolution of Coherent Precipitates in an Aluminum Alloy W319: A Correlative Anisotropic Small Angle x-Ray Scattering, Transmission Electron Microscopy and Atom-Probe Tomography Study, Acta Mater., 2016, 116, p 219–230

    Article  CAS  Google Scholar 

  8. C. Sigli, F. De Geuser, A. Deschamps, J. Lepinoux, and M. Perez, Recent Advances in the Metallurgy of Aluminum Alloys. Part II: Age Hardening, Cr Phys., 2018, 19(8), p 688–709

    Article  CAS  Google Scholar 

  9. B. Rouxel, M. Ramajayam, T.J. Langan, J. Lamb, P.G. Sanders, and T. Dorin, Effect of Dislocations, Al3(Sc, Zr) Distribution and Ageing Temperature on θ′ Precipitation in Al-Cu-(Sc)-(Zr) Alloys, Materialia, 2020, 9, p 100610

    Article  CAS  Google Scholar 

  10. D. Shin, A. Shyam, S. Lee, Y. Yamamoto, and J.A. Haynes, Solute Segregation at the Al/Theta ‘-Al2Cu Interface in Al-Cu Alloys, Acta Mater., 2017, 141, p 327–340

    Article  CAS  Google Scholar 

  11. A. Shyam, S. Roy, D. Shin, J.D. Poplawsky, L.F. Allard, Y. Yamamoto, J.R. Morris, B. Mazumder, J.C. Idrobo, A. Rodriguez, T.R. Watkins, and J.A. Haynes, Elevated Temperature Microstructural Stability in Cast AlCuMnZr Alloys Through Solute Segregation, Mater. Sci. Eng., A, 2019, 765, p 138279

    Article  CAS  Google Scholar 

  12. S. Mondol, S.K. Makineni, S. Kumar, and K. Chattopadhyay, Enhancement of High Temperature Strength of 2219 Alloys Through Small Additions of Nb and Zr and a Novel Heat Treatment, Metall. Mater. Trans. A, 2018, 49A(7), p 3047–3057

    Article  Google Scholar 

  13. J. Rakhmonov, K. Liu, L. Pan, F. Breton, and X.G. Chen, Enhanced Mechanical Properties of High-Temperature-Resistant Al-Cu Cast Alloy by Microalloying with Mg, J. Alloys Compd., 2020, 827, p 154305

    Article  CAS  Google Scholar 

  14. Y.H. Gao, L.F. Cao, J. Kuang, J.Y. Zhang, G. Liu, and J. Sun, Assembling Dual Precipitates to Improve High-Temperature Resistance of Multi-Microalloyed Al-Cu Alloys, J. Alloys Compd., 2020, 822, p 153629

    Article  CAS  Google Scholar 

  15. Y.H. Gao, L.F. Cao, C. Yang, J.Y. Zhang, G. Liu, and J. Sun, Co-stabilization of θ′-Al2Cu and Al3Sc Precipitates in Sc-Microalloyed Al-Cu Alloy with Enhanced Creep Resistance, Mater. Today Nano, 2019, 6, p 100035

    Article  Google Scholar 

  16. S.S. Liang, S.P. Wen, X.L. Wu, H. Huang, K.Y. Gao, and Z.R. Nie, The Synergetic Effect of Si and Sc on the Thermal Stability of the Precipitates in AlCuMg Alloy, Mater. Sci. Eng., A, 2020, 783, p 139319

    Article  CAS  Google Scholar 

  17. S. Mondol, S. Kumar, and K. Chattopadhyay, Effect of Thermo-Mechanical Treatment on Microstructure And Tensile Properties of 2219ScMg Alloy, Mater. Sci. Eng., A, 2019, 759, p 583–593

    Article  CAS  Google Scholar 

  18. P. Shower, S. Roy, C.S. Hawkins, and A. Shyam, The Effects of Microstructural Stability on the Compressive Response of Two Cast Aluminum Alloys up to 300 °C, Mater. Sci. Eng., A, 2017, 700, p 519–529

    Article  CAS  Google Scholar 

  19. P. Heugue, D. Larouche, F. Breton, R. Martinez, and X.G. Chen, Precipitation Kinetics of an AlSi7Cu3.5Mg0.1 Alloy with Zr and V additions, in 16th International Aluminum Alloys Conference (2018)

  20. T.K. Akopyan, N.A. Belov, and N.V. Letyagin, Effect of Trace Addition of Sn on the Precipitation Hardening in Al-Si-Cu Eutectic Alloy, JOM, 2019, 71(5), p 1768–1775

    Article  CAS  Google Scholar 

  21. A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman, Precipitates in Al-Cu Alloys Revisited: Atom-Probe Tomographic Experiments and First-Principles Calculations of Compositional Evolution and Interfacial Segregation, Acta Mater., 2011, 59(15), p 6187–6204

    Article  CAS  Google Scholar 

  22. A. Lemieux, J. Langlais, and X.G. Chen, Reduction of Hot Tearing of Cast Semi-Solid 206 Alloys, Solid State Phenom., 2013, 192–193, p 101–106

    Google Scholar 

  23. K. Liu, X. Cao, and X.G. Chen, Tensile Properties of Al-Cu 206 Cast Alloys with Various Iron Contents, Metall. Mat. Trans. A, 2014, 45(5), p 2498–2507

    Article  CAS  Google Scholar 

  24. B.K. Milligan, S. Roy, C.S. Hawkins, L.F. Allard, and A. Shyam, Impact of Microstructural Stability on the Creep Behavior of Cast Al-Cu Alloys, Mater. Sci. Eng., A, 2020, 772, p 138697

    Article  CAS  Google Scholar 

  25. F. Lotter, D. Petschke, T.E.M. Staab, U. Rohrmann, T. Schubert, G. Sextl, and B. Kieback, The Influence of Trace Elements (In, Sn) on the Hardening Process of Al-Cu Alloys, Phys. Status Solidi A, 2018, 215(11), p 180038

    Article  Google Scholar 

  26. Z. Shen, Q. Ding, C. Liu, J. Wang, H. Tian, J. Li, and Z. Zhang, Atomic-Scale Mechanism of the θ″ → θ′ Phase Transformation in Al-Cu Alloys, J. Mater. Sci. Technol., 2017, 33(10), p 1159–1164

    Article  Google Scholar 

  27. I.C. Barlow, W.M. Rainforth, and H. Jones, The Role of Silicon in the Formation of the (Al5Cu6Mg2) σ Phase in Al-Cu-Mg Alloys, J. Mater. Sci., 2000, 35(6), p 1413–1418

    Article  CAS  Google Scholar 

  28. S. Roy, L.F. Allard, A. Rodriguez, W.D. Porter, and A. Shyam, Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II-Mechanical and Thermal Properties, Metall. Mater. Trans. A, 2017, 48A(5), p 2543–2562

    Article  Google Scholar 

  29. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper, The Precipitation Sequence in Al-Mg-Si Alloys, Acta Mater., 1998, 46(11), p 3893–3904

    Article  CAS  Google Scholar 

  30. S.J. Andersen, C.D. Marioara, J. Friis, S. Wenner, and R. Holmestad, Precipitates in Aluminium Alloys, Adv. Phys. X, 2018, 3(1), p 1479984

    Google Scholar 

  31. S.P. Ringer, B.T. Sofyan, K.S. Prasad, and G.C. Quan, Precipitation Reactions in Al-4.0Cu-0.3 Mg (wt.%) Alloy, Acta Mater., 2008, 56(9), p 2147–2160

    Article  CAS  Google Scholar 

  32. E. Rincon, H.F. Lopez, M.M. Cisneros, and H. Mancha, Temperature Effects on the Tensile Properties of Cast and Heat Treated Aluminum Alloy A319, Mater. Sci. Eng. A, 2009, 519(1-2), p 128–140

    Article  Google Scholar 

  33. J.F. Nie and B.C. Muddle, Microstructural Design of High-Strength Aluminum Alloys, J. Phase Equilib., 1998, 19(6), p 543–551

    Article  CAS  Google Scholar 

  34. V. Vaithyanathan, C. Wolverton, and L.Q. Chen, Multiscale Modeling Of Theta ‘ Precipitation in Al-Cu Binary Alloys, Acta Mater., 2004, 52(10), p 2973–2987

    Article  CAS  Google Scholar 

  35. C.S. Jayanth and P. Nash, Factors Affecting Particle-Coarsening Kinetics and Size Distribution, J. Mater. Sci., 1989, 24(9), p 3041–3052

    Article  CAS  Google Scholar 

  36. J.D. Boyd and R.B. Nicholson, The Coarsening Behaviour of θ″ and θ′ Precipitates in Two Al-Cu Alloys, Acta Metall., 1971, 19(12), p 1379–1391

    Article  CAS  Google Scholar 

  37. P. Shower, J.R. Morris, D. Shin, B. Radhakrishnan, L.F. Allard, and A. Shyam, Temperature-Dependent Stability of θ′-Al2Cu Precipitates Investigated with Phase Field Simulations and Experiments, Materialia, 2019, 5, p 100185

    Article  Google Scholar 

  38. P. Heugue, D. Larouche, F. Breton, R. Martinez, and X.G. Chen, Evaluation of the Growth Kinetics of theta ‘ and theta-Al2Cu Precipitates in a Binary Al-3.5 Wt Pct Cu Alloy, Metall. Mater. Trans. A, 2019, 50A(7), p 3048–3060

    Article  Google Scholar 

  39. J.D. Poplawsky, B.K. Milligan, L.F. Allard, D. Shin, P. Shower, M.F. Chisholm, and A. Shyam, The Synergistic Role of Mn and Zr/Ti in Producing θ′/L12 co-Precipitates in Al-Cu Alloys, Acta Mater., 2020, 194, p 577–586

    Article  CAS  Google Scholar 

  40. P. Shower, J. Morris, D. Shin, B. Radhakrishnan, J. Poplawsky, and A. Shyam, Mechanisms for Stabilizing θ′(Al2Cu) Precipitates at Elevated Temperatures Investigated with Phase Field Modeling, Materialia, 2019, 6, p 100335

    Article  Google Scholar 

  41. S. Mondol, T. Alam, R. Banerjee, S. Kumar, and K. Chattopadhyay, Development of a High Temperature High Strength Al Alloy by Addition of Small Amounts of Sc and Mg to 2219 Alloy, Mater. Sci. Eng., A, 2017, 687, p 221–231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) under the Grant No. CRDPJ 514651-17 and Rio Tinto Aluminum through the Research Chair in the Metallurgy of Aluminum Transformation at University of Quebec in Chicoutimi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovid Rakhmonov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhmonov, J., Liu, K. & Chen, G.X. Effects of Compositional Variation on the Thermal Stability of \(\theta\)′-Al2Cu Precipitates and Elevated-Temperature Strengths in Al-Cu 206 Alloys. J. of Materi Eng and Perform 29, 7221–7230 (2020). https://doi.org/10.1007/s11665-020-05227-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05227-5

Keywords

Navigation