Skip to main content
Log in

Microstructure Evolution and Mechanical Properties of AQ80 Alloy During Forward Extrusion and Twist Deformation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A new severe plastic deformation technique, forward extrusion and twist deformation, was adopted to manufacture magnesium (Mg) alloys at different temperatures. The microstructure evolution and mechanical properties of extruded AQ80 alloy were investigated. The strain distribution in FETD extrusion was simulated with finite element simulation software. The extruded samples exhibit finer grain sizes, weaker basal textures, higher recrystallized volume fractions and higher strengths than the traditional forward extrusion samples. This technology can refine the microstructure and improve the mechanical properties of Mg alloys. At lower temperatures, the grain size is smaller with a finer second phase, which is detected as Mg17AL12. Mg17AL12 has a particle-stimulated nucleation effect and a retarding effect on grain growth, resulting in much finer DRXed grains. Due to the effects of fine-grained strengthening and second phase strengthening, the strength and elongation of AQ80 alloy can be improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.R. Zeng, N. Stanforda, C.H.J. Daviesb, J.F. Nie, and N. Birbilis, Magnesium Extrusion Alloys: A Review of Developments and Prospects, Int. Mater. Rev., 2019, 64, p 27–62

    Article  CAS  Google Scholar 

  2. D.F. Shi, M.T. Pérez-Prado, and C.M. Cepeda-Jiménez, Effect of Solutes on Strength and Ductility of Mg Alloys, Acta Mater., 2019, 180, p 218–230

    Article  CAS  Google Scholar 

  3. E.A.A. Abd, Y. Xu, S. Ha, and S.H. Zhang, Computational Homogenization of Tensile Deformation Behaviors of a Third Generation Al-Li Alloy 2060-T8 Using Crystal Plasticity Finite Element Method, Mater. Sci. Eng. A, 2018, 731, p 583–594

    Article  Google Scholar 

  4. G. Chen, X.S. Chang, J.X. Zhang, Y. Jin, C. Sun, Q. Chen, and Z.D. Zhao, Microstructures and Mechanical Properties of In-Situ Al3Ti/2024 Aluminum Matrix Composites Fabricated by Ultrasonic Treatment and Subsequent Squeeze Casting, Met. Mater. Int., 2019. https://doi.org/10.1007/s12540-019-00396-y

    Article  Google Scholar 

  5. Y. Wang, F. Li, X.W. Li, and W.B. Fang, Unusual Texture Formation and Mechanical Property in AZ31 Magnesium Alloy Sheets Processed by CVCDE, J. Mater. Process. Technol., 2019. https://doi.org/10.1016/j.jmatprotec.2019.116360

    Article  Google Scholar 

  6. Z.R. Zeng, Y.M. Zhu, R.L. Liu, S.W. Xu, C.H.J. Davies, J.F. Nie, and N. Birbilis, Achieving Exceptionally High Strength in Mg-3Al-1Zn-0.3Mn Extrusions Via Suppressing Intergranular Deformation, Acta Mater., 2018, 160, p 97–108

    Article  CAS  Google Scholar 

  7. Z.J. Yu, C. Xu, J. Meng, and S. Kamado, Microstructure Evolution and Mechanical Properties of a High Strength Mg-11.7Gd-4.9Y-0.3Zr (wt%) ALLOY prepared by Pre-Deformation Annealing, Hot Extrusion and Ageing, Mater. Sci. Eng. A, 2017, 703, p 348–358

    Article  CAS  Google Scholar 

  8. X.Y. Liu, L.W. Lu, K. Sheng, Y. Xiang, and Z.Q. Wu, Effect of Pre-compression on Microstructure Evolution of AQ80 Magnesium Alloy in Forward Extrusion and Twist Deformation, JOM, 2019, 71, p 4726–4736

    Article  CAS  Google Scholar 

  9. Z. Yu, Y.D. Huang, X. Qiu, G.F. Wang, F. Meng, N. Hort, and J. Meng, Fabrication of a High Strength Mg-11Gd-4.5Y-1Nd-1.5Zn–0.5Zr (wt%) Alloy by Thermomechanical Treatments, Mater. Sci. Eng. A, 2015, 622, p 121–130

    Article  CAS  Google Scholar 

  10. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv, Ultra High-Strength Mg-Gd-Y-Zn-Zr Alloy Sheets Processed by Large-Strain Hot Rolling and Ageing, Mater. Sci. Eng. A, 2012, 547, p 93–98

    Article  CAS  Google Scholar 

  11. Y. Huang, Y. Wang, X. Meng, L. Wan, J. Cao, L. Zhou, and J. Feng, Dynamic Recrystallization and Mechanical Properties of Friction Stir Processed Mg-Zn-Y-Zr Alloys, J. Mater. Process. Technol., 2017, 249, p 331–338

    Article  CAS  Google Scholar 

  12. K. Narooei and T.A. Karimi, A New Model for Prediction the Strain Field and Extrusion Pressure in ECAE Process of Circular Cross Section, Appl. Math. Model., 2010, 34, p 1901–1917

    Article  Google Scholar 

  13. T. Wang, H. Zheng, R. Wu, J. Yang, X. Ma, and M. Zhang, Preparation of Fine-Grained and High-Strength Mg-8Li-3Al-1Zn Alloy by Accumulative roll Bonding, Adv. Eng. Mater., 2016, 18, p 304–311

    Article  CAS  Google Scholar 

  14. Q. Wang, Y. Mu, J. Lin, L. Zhang, and H.J. Roven, Strengthening and Toughening Mechanisms of an Ultrafine Grained Mg-Gd-Y-Zr Alloy Processed by Cyclic Extrusion and Compression, Mater. Sci. Eng. A, 2017, 699, p 26–30

    Article  CAS  Google Scholar 

  15. R. Alizadeh, R. Mahmudi, A. Ngan, Y. Huang, and T. Langdon, Super Plasticity of a Nano-Grained Mg-Gd-Y-Zr Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2016, 651, p 786–794

    Article  CAS  Google Scholar 

  16. T.Z. Han, G.S. Huang, Q.Y. Deng, G.G. Wang, B. Jiang, A. Tang, Y.T. Zhu, and F.S. Pan, Grain Refining and Mechanical Properties of AZ31 Alloy Processed by Accumulated Extrusion Bonding, J. Alloys Compd., 2018, 745, p 599–608

    Article  CAS  Google Scholar 

  17. J.T. Wang, R.B. Figueiredo, and T.G. Langdon, Twist Extrusion: Fundamentals and Applications, Mater. Sci. Forum, 2010, 667–669, p 31–37

    Google Scholar 

  18. S.R. Bahadori, S.A. Asghar, and A. Mousavi, The Evolution of Homogeneity in a Transverse Cross Section of Aluminum Alloy Profile Deformed by Twist Extrusion, JOM, 2012, 64, p 593–599

    Article  CAS  Google Scholar 

  19. M.I. Latypov, I.V. Alexandrov, Y.E. Beygelzimer, S. Lee, and H.S. Kim, Finite Element Analysis of Plastic Deformation in twist Extrusion, Comp. Mater. Sci., 2012, 60, p 194–201

    Article  CAS  Google Scholar 

  20. F. Rahimi, A.R. Eivani, and M. Kiani, Effect of Die Design Parameters on the Deformation Behavior in Pure Shear Extrusion, Mater. Design., 2015, 83, p 144–153

    Article  Google Scholar 

  21. S.A.A. Akbari Mousavi, Sh Ranjbar Bahadori, and A.R. Shahab, Numerical Experimental Studies of the Plastic Strains Distribution Using Subsequent Direct Extrusion After Three Twist Extrusion Passes, Mater. Sci. Eng. A, 2010, 527, p 3967–3974

    Article  Google Scholar 

  22. S.A.A.A. Mousavi and S.R. Bahador, Investigation and Numerical Analysis of Strain Distribution in the Twist Extrusion of Pure Aluminum, JOM, 2011, 63, p 69–76

    Google Scholar 

  23. Y. Liu, F. Li, and H.W. Jiang, Microstructural Analysis and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Alternate Extrusion (AE), Int. J. Adv. Manuf. Technol., 2017, 92, p 4293–4301

    Article  Google Scholar 

  24. Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Useful Properties of Twist Extrusion, Mater. Sci. Eng. A, 2009, 53, p 14–17

    Article  Google Scholar 

  25. V. Varyukhin, Y. Beygelzimer, S. Synkov, and D. Orlov, Application of Twist Extrusion, Mater. Sci. Forum, 2006, 503–504, p 335–339

    Article  Google Scholar 

  26. H.J. Hu, Y.L. Ying, Z.W. Ou, and X.Q. Wang, Comparisons of Microstructures and Texture and Mechanical Properties of Magnesium Alloy Fabricated by Compound Extrusion and Direct Extrusion, Mater. Sci. Eng. A, 2017, 695, p 360–366

    Article  CAS  Google Scholar 

  27. R. Yuan, Z. Wu, H. Cai, L. Zhao, and X.P. Zhang, Effects of Extrusion Parameters on Tensile Properties of Magnesium Alloy Tubes Fabricated Via Hydrostatic Extrusion Integrated with Circular ECAP, Mater. Des., 2016, 101, p 131–136

    Article  CAS  Google Scholar 

  28. D. Orlov, Y. Beygelzimer, S. Synkov, V. Varyukhin, N. Tsuji, and Z.J. Horita, Plastic Flow, Structure and Mechanical Properties in Pure Al Deformed by Twist Extrusion, Mater. Sci. Eng. A, 2009, 519, p 105–111

    Article  Google Scholar 

  29. L.W. Lu, C.M. Liu, J. Zhao, W.B. Zeng, and Z.C. Wang, Modification of Grain Refinement and Texture in AZ31 Mg Alloy by a New Plastic Deformation Method, J. Alloys Compd., 2015, 628, p 130–134

    Article  CAS  Google Scholar 

  30. H. Zendehdel and A. Hassani, Influence of Twist Extrusion Process on Microstructure and Mechanical Properties of 6063 Aluminum Alloy, Mater. Des., 2012, 37, p 13–18

    Article  CAS  Google Scholar 

  31. L. Chen, M.C. Liang, G.Q. Zhao, J.X. Zhou, and C.S. Zhang, Microstructure Evolution of AZ91 Alloy During Hot Extrusion Process with Various Ram Velocity, Vacuum, 2018, 150, p 136–143

    Article  CAS  Google Scholar 

  32. X. Li, F. Jiao, T. Al-Samman, and G.S. Chowdhury, Influence of Second-Phase Precipitates on the Texture Evolution of Mg-Al-Zn Alloys During Hot Deformation, Scr. Mater., 2012, 66, p 159–162

    Article  CAS  Google Scholar 

  33. Y. Chen, R. Zhang, T. Zhou, L. Hu, J. Tu, L.X. Shi, Y. Zhi, and L.W. Lu, Influence of Extrusion Speed on the Microstructure Evolution, Interface Bonding and Mechanical Response of Mg MB26/Al 7075 Composite Rod, Acta. Metall. Sin-Engl., 2019, 32, p 253–262

    Article  CAS  Google Scholar 

  34. M.T. Pérez-Prado and O.A. Ruano, Texture Evolution During Grain Growth in Annealed MG AZ61 Alloy, Scr. Mater., 2003, 48, p 59–64

    Article  Google Scholar 

  35. J. Bohlen, S.B. Yi, J. Swiostek, D. Letzig, H.G. Brokmeier, and K.U. Kainer, Microstructure and Texture Development During Hydrostatic Extrusion of Magnesium Alloy AZ31, Scr. Mater., 2005, 53, p 259–264

    Article  CAS  Google Scholar 

  36. L.W. Lu, C.M. Liu, Z.R. Yin, J. Zhao, L. Gan, and Z.C. Wang, Double Extrusion of Mg-Al-Zn Alloys, Int. J. Adv. Manuf. Technol., 2017, 89, p 869–875

    Article  Google Scholar 

  37. C. Xu, T. Nakata, G.H. Fan, K. Yamanaka, G.Z. Tang, L. Geng, and S. Kamado, Effect of Partially Substituting Ca with Mischmetal on the Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn-Based Alloys, Acta. Metall. Sin-Engl., 2019, 32, p 205–217

    Article  CAS  Google Scholar 

  38. L. Tang, Y. Zhao, R.K. Islamgaliev, C.Y.A. Tsao, R.Z. Valiev, E.J. Lavernia, and Y.T. Zhu, Enhanced Strength and Ductility of AZ80 Mg Alloys by Spray Forming and ECAP, Mater. Sci. Eng., A, 2016, 670, p 280–291

    Article  CAS  Google Scholar 

  39. H.K. Lin, J.C. Huang, and T.G. Langdon, Relationship Between Texture and Low Temperature Superplasticity in an Extruded AZ31 Mg Alloy Processed by ECAP, Mater. Sci. Eng., A, 2005, 402, p 250–257

    Article  Google Scholar 

  40. D.L. Yu, D.F. Zhang, Y.X. Luo, J. Sun, J.Y. Xu, and F.S. Pan, Microstructure Evolution During High Cycle Fatigue in Mg-6Zn-1Mn Alloy, Mater. Sci. Eng. A, 2016, 658, p 99–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by National Natural Science Foundation of China (Grant Nos. 51975207, 51728202), Hunan Provincial Natural Science Foundation for Excellent Young Scholars of China (Grant No. 2019JJ30010) and the Scientific Research Fund of the Hunan Provincial Education Department (Grant No. 17B089).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwei Lu, Min Ma or Yong Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Lu, L., Ma, M. et al. Microstructure Evolution and Mechanical Properties of AQ80 Alloy During Forward Extrusion and Twist Deformation. J. of Materi Eng and Perform 29, 6774–6783 (2020). https://doi.org/10.1007/s11665-020-05104-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05104-1

Keywords

Navigation