Skip to main content
Log in

Determination of Hot Extrusion Parameters in a Spray-Formed Ultrahigh-Strength Aluminum Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To determine a suitable industrial extrusion process, the hot deformation behavior of a spray-formed ultrahigh-strength aluminum alloy was studied with a series of isothermal compression tests. The temperature range was from 340 to 480 °C, while the strain rates ranged from 0.001 to 1 s−1. The flow stress behavior was studied, and the activation energy map showed the deformation difficulty degree under different compression conditions. The dynamic materials model processing map displayed three high-efficiency domains and two low-efficiency domains. As a result of the microstructure observations, it was determined that the high-efficiency domains were related to dynamic recrystallization, superplasticity and cracking. The optimum processing conditions were at intermediate temperatures from 410 to 430 °C and strain rates from 0.008 to 0.06 s−1. In light of the extrusion calibration, the practical extrusion condition was determined to be 410 °C/0.03 s−1. The surface morphology and microstructure after practical hot extrusion were consistent with the prediction by the processing maps and calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.T. Huo, J.T. Shi, L.G. Hou, and J.S. Zhang, An Improved Thermo-Mechanical Treatment of High-Strength Al-Zn-Mg-Cu Alloy for Effective Grain Refinement and Ductility Modification, J. Mater. Process. Technol., 2017, 239, p 303–314

    Article  CAS  Google Scholar 

  2. B. Liu, Q. Lei, L. Xie, M. Wang, and Z. Li, Microstructure and Mechanical Properties of High Product of Strength and Elongation Al-Zn-Mg-Cu-Zr Alloys Fabricated by Spray Deposition, Mater. Des., 2016, 96, p 217–223

    Article  CAS  Google Scholar 

  3. D. Feng, X.M. Zhang, S.D. Liu, and Y.L. Deng, Constitutive Equation and Hot Deformation Behavior of HomogenizedAl-7.68Zn-2.12 Mg-1.98Cu-0.12Zr Alloy During Compression at Elevated Temperature, Mater. Sci. Eng. A, 2014, 608, p 63–72

    Article  CAS  Google Scholar 

  4. M.M. MarínA, M. Camacho, and J.A. Pérez, Influence of the Temperature On Aa6061 Aluminum Alloy in a Hot Extrusion Process, Procedia Manuf., 2017, 13, p 327–334

    Article  Google Scholar 

  5. S. Gourdet and F. Montheillet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 16, p 2685–2699

    Article  Google Scholar 

  6. H.J. McQueen and M.E. Kassner, Comments on’ a Model of Continuous Dynamic Recrystallization’ Proposed for Aluminum, Scr. Mater., 2004, 51, p 461–465

    Article  CAS  Google Scholar 

  7. F. Kolpak, A. Schulze, C. Dahnke, and A.E. Tekkaya, Predicting Weld-Quality in Direct Hot Extrusion of Aluminium Chips, J. Mater. Process. Technol, 2019, 274, p 116294

    Article  Google Scholar 

  8. J.Q. Yu, G.Q. Zhao, C.S. Zhang, and L. Chen, Dynamic Evolution of Grain Structure and Micro-Texture Along A Welding Path of Aluminum Alloy Profiles Extruded by Porhole Dies, Mater. Sci. Eng. A, 2017, 682, p 679–690

    Article  CAS  Google Scholar 

  9. F. Parvizian, A. Guzel, A. Jager, H.G. Lambers, B. Svendsen, and A.E. Tekkaya, Modeling of Dynamic Microstructure Evlution of En Aw-6082 Alloy During Hot Forward Extrusion, Comput. Mater. Sci., 2011, 50, p 1520–1525

    Article  CAS  Google Scholar 

  10. G.J. Chen, L. Chen, G.Q. Zhao, and C.S. Zhang, Microstructure Analysis of An Al-Zn-Mg Alloy During Porthole Die Extrusion Based on Modeling of Constitutive Equation and Dynamic Recrystallization, J. Alloys. Compd., 2017, 710, p 80–91

    Article  CAS  Google Scholar 

  11. P. Guo, F. Lia, L. Yanga, R. Bagheria, Q. Zhanga, and B.Q. Li, Ultra-Fine-Grained Zn-0.5mn Alloy Processed by Multi-Pass Hot Extrusion: Grain Refinement Mechanism and Room-Temperature Superplasticity, Mater. Sci. Eng. A, 2019, 748, p 262–266

    Article  CAS  Google Scholar 

  12. G. Avramovic-Cingara, D.D. Perovic, and H.J. McQueen, Hot Deformation Mechanisms of A Solution-Treated Ai-Li-Cu-Mg-Zr Alloy, Metall. Mater. Trans. A, 1996, 27, p 3478–3490

    Article  Google Scholar 

  13. C. Shi and X.-G. Chen, Effect of Zr Addition on Hot Deformation Behavior and Microstructural Evolution of AA7150 Aluminum Alloy, Mater. Sci. Eng. A, 2014, 596, p 183–193

    Article  CAS  Google Scholar 

  14. C. Shi and X.-G. Chen, Effect of Vanadium on Hot Deformation and Microstructural Evolution of 7150 Aluminum Alloy, Mater. Sci. Eng. A, 2014, 613, p 91–102

    Article  CAS  Google Scholar 

  15. X. Qian, N. Parson, and X.-G. Chen, Effects of Mn Addition and Related Mn-Containing Dispersoids on the Hot Deformation Behavior of 6082 Aluminum Alloys, Mater. Sci. Eng. A, 2019, 764, p 138253

    Article  CAS  Google Scholar 

  16. D.X. Wen, Y.C. Lin, H.B. Li, X.M. Chen, J. Deng, and L.T. Li, Hot Deformation Behavior and Processing Map of a Typical Ni-Based Superalloy, Mater. Sci. Eng., A, 2014, 591, p 183–192

    Article  CAS  Google Scholar 

  17. Y.V.R.L. Prasad, Author’s Reply: Dynamic Materials Model: Basis And Principles, Metall, Mater. Trans. A, 1996, 27, p 235–236

    Article  Google Scholar 

  18. Y. Yang, Z.P. Xie, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, Processing Maps for Hot Deformation of the Extruded 7075 Aluminum Alloy Bar: Anisotropy of Hot Workability, Mater. Sci. Eng. A, 2014, 615, p 183–190

    Article  CAS  Google Scholar 

  19. Juqiang Li, Juan Liu, and Zhenshan Cui, Characterization of hot Deformation Behavior of Extruded ZK60 Magnesium Alloy using 3D Processing Maps, Mater. Des., 2014, 56, p 889–897

    Article  CAS  Google Scholar 

  20. Juan Liu, Zhenshan Cui, and Congxin Li, Analysis of Metal Workability by Integration of FEM AND 3-D Processing Maps, J. Mater. Process. Technol., 2008, 205, p 497–505

    Article  CAS  Google Scholar 

  21. Yang Liu, Cong Geng, Qiquan Lin, Yifeng Xiao, Xu Junrui, and Wei Kang, Study on Hot Deformation Behavior and Intrinsic Workability of 6063 Aluminum Alloys using 3D Processing Map, J. Alloys Compd., 2017, 713, p 212–221

    Article  CAS  Google Scholar 

  22. Yuanyuan Dong, Cunsheng Zhang, Guoqun Zhao, Yanjin Guan, Anjiang Gao, and Wenchao Sun, Constitutive Equation And Processing Maps of an Al-Mg-Si Aluminum Alloy: Determination and Application in Simulating Extrusion Process of Complex Profiles, Mater. Des., 2016, 92, p 983–997

    Article  CAS  Google Scholar 

  23. C. Shi, W. Mao, and X.G. Chen, Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy, Mater. Sci. Eng. A, 2013, 571, p 83–91

    Article  CAS  Google Scholar 

  24. K.K. Basanth, K.K. Saxena, S.R. Dey, V. Pancholi, and A. Bhattacharjee, Processing Map-Microstructure Evolution Correlation of Hot Compressed Near Alpha Titanium Alloy (TiHy 600), J. Alloys Compd., 2017, 691, p 906–913

    Article  Google Scholar 

  25. L.-M. Yan, J. Shen, J.-P. Li, Z.-B. Li, and X.-D. Yan, Deformation Behavior and Microstructure of an Al-Zn-Mg-Cu-Zr Alloy During Hot Deformation, Int. J. Miner. Metall. Mater., 2010, 17, p 46–52

    Article  CAS  Google Scholar 

  26. M. Rajamuthamilselvan and S. Ramanathan, Hot Deformation Behaviour of 7075 Alloy, J. Alloys Compd., 2011, 509, p 948–952

    Article  CAS  Google Scholar 

  27. H. Wu, S.P. Wen, H. Huang, K.Y. Gao, X.L. Wu, W. Wang, and Z.R. Nie, Hot Deformation Behavior and Processing Map of a New Type Al-Zn-Mg-Er-Zr Alloy, J. Alloys Compd., 2016, 685, p 869–880

    Article  CAS  Google Scholar 

  28. C.-Q. Huang, J. Deng, S.-X. Wang, and L.-L. Liu, A Physical-Based Constitutive Model to Describe the Strain-Hardening and Dynamic Recovery Behaviors of 5754 Aluminum Alloy, Mater. Sci. Eng. A, 2017, 699, p 106–113

    Article  CAS  Google Scholar 

  29. K.E. Knipling, D.C. Dunand, and D.N. Seidman, Precipitation Evolution in Al-Zr and Al-Zr-Ti Alloys During Aging at 450-600 °C, Acta Mater., 2008, 56, p 1182–1195

    Article  CAS  Google Scholar 

  30. K.E. Knipling, D.C. Dunand, and D.N. Seidman, Precipitation Evolution in Al-Zr and Al-Zr-Ti Alloys During Isothermal Aging at 375–425 °C, Acta Mater., 2008, 56, p 114–127

    Article  CAS  Google Scholar 

  31. A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49, p 1199–1207

    Article  CAS  Google Scholar 

  32. G.J. Reddy, N. Srinivasan, A.A. Gokhale, and B.P. Kashyap, Processing Map for Hot Working of Spray Formed and Hot Isostatically Pressed Al-Li Alloy (UL40), J. Mater. Process. Technol., 2009, 209, p 5964–5972

    Article  Google Scholar 

  33. F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Prediction of Pressure Required to Extrude a Wrought Magnesium Alloy using Optimized Strain-Dependent Constitutive Parameters, J. Mater. Process. Technol., 2011, 211, p 1241–1246

    Article  CAS  Google Scholar 

  34. H.P. Stüwe, Examples of Strain Localisation, Springer, Vienna, 1998

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Science and Technology Major Project of Hunan Province (2017GK4002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, X., Pan, Q. et al. Determination of Hot Extrusion Parameters in a Spray-Formed Ultrahigh-Strength Aluminum Alloy. J. of Materi Eng and Perform 29, 800–810 (2020). https://doi.org/10.1007/s11665-020-04630-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04630-2

Keywords

Navigation