Skip to main content

Advertisement

Log in

Research on the Mechanical Properties and Hot Deformation Behaviors of Spray-Deposited 7034 Al Alloy Processed by Forward Extrusion

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Spray-deposited 7034 Al alloy processed by forward extrusion has good application prospect in manufacturing structure components of aerospace equipment, due to super-high strength achieved by hot deformation and heat treatment. To manufacture high-performance 7034 Al alloy structure components used in aerospace equipment, it is critical to find out an effective heat treatment scheme and a reasonable hot processing window for spray-deposited 7034 Al alloy processed by forward extrusion. This paper attempted to investigate the mechanical properties and the hot deformation behaviors of spray-deposited 7034 Al alloy processed by forward extrusion. Firstly, the tensile tests were performed to evaluate the mechanical properties of this alloy undergoing various heat treatment, and it was found this alloy obtained excellent mechanical properties (the ultimate strength reached 796 MPa and the elongation reached 10.6%) by two-stage solution (450 °C for 1 h +475 °C for 1 h) and two-stage aging (80 °C for 8 h +120 °C for 8 h). Secondly, isothermal compression (IC) tests were performed under the deformation conditions of 330-450 °C and 0.01-10 /s to investigate the hot deformation behavior of this alloy. Based on the data from IC tests, processing maps (MPs) and the constitutive equation of this alloy were established, and the hot processing window for this alloy was ascertained to be within the range of 340-450 °C and 0.01-0.81 /s. Finally, through characterizing the microstructures of specimens used for the tensile tests and IC tests, the improvement mechanism of the mechanical properties of this alloy after heat treatment was revealed as well as the hot deformation mechanism of this alloy. The research results can provide theoretical guideline for manufacturing high-performance 7034 Al alloy structure components used in aerospace equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. L. Liao and I.P. Pasternak, A Review of Airship Structural Research and Development, Prog. Aerosp. Sci., 2009, 45(4–5), p 83–96.

    Article  Google Scholar 

  2. D.Y. Tian, X.H. Han, L. Hua, B. Huang and S.W. Yang, A Novel Process for Axial Closed Extrusion of Ring Part with Mesh-like ribs, Int. J. Mech. Sci., 2020, 165, p 105186.

    Article  Google Scholar 

  3. X. Zeng, X.G. Fan, H.W. Li, M. Zhan, H.R. Zhang, K.Q. Wu, T.W. Ren and S.H. Li, Die Filling Mechanism in Flow Forming of Thin-walled Tubular Parts with Cross Inner Ribs, J. Manuf. Process., 2020, 58, p 832–844.

    Article  Google Scholar 

  4. L. Deng, X.T. Li, J.S. Jin, X.Y. Wang and J.J. Li, T-shape Upsetting-extruding Test for Evaluating Friction Conditions during Rib-web Part Forming, J. Mater. Process. Technol., 2014, 214(11), p 2276–2283.

    Article  Google Scholar 

  5. H.C. Li, F.Y. Cao, S. Guo, Z.L. Ning, Z.Y. Liu, Y.D. Jia, S. Scudino, T. Gemming and J.F. Sun, Microstructures and Properties Evolution of Spray-deposited Al-Zn-Mg-Cu-Zr Alloys with Scandium Addition, J. Alloy. Compd., 2017, 691, p 482–488.

    Article  CAS  Google Scholar 

  6. X.Y. Dai, C.Q. Xia, X.M. Peng and K. Ma, Structure and Properties of an Ultra-high Strength 7xxx Aluminum Alloy Contained Sc and Zr, J. Univ. Sci. Technol. Beijing, 2008, 15, p 276–279.

    Article  CAS  Google Scholar 

  7. Y.G. Liao, X.Q. Han, M.X. Zeng and M. Jin, Influence of Cu on Microstructure and Tensile Properties of 7XXX Series Aluminum Alloy, Mater. Des., 2015, 66, p 581–586.

    Article  CAS  Google Scholar 

  8. Y. Wang, B.Q. Xiong, Z.H. Li, S.H. Huang, K. Wen, X.W. Li and Y.A. Zhang, As-cast Microstructure of Al-Zn-Mg-Cu-Zr Alloy Containing Trace Amount of Sc, Rare Met., 2019, 38, p 343–349.

    Article  CAS  Google Scholar 

  9. N. Takata, M. Ishihara, A. Suzuki and M. Kobashi, Microstructure and Strength of a Novel Heat-resistant Aluminum Alloy Strengthened by T-Al6Mg11Zn11 Phase at Elevated Temperatures, Mater. Sci. Eng., A, 2019, 739, p 62–70.

    Article  CAS  Google Scholar 

  10. Y.D. Jia, F.Y. Cao, S. Guo, P. Ma, J.S. Liu and J.F. Sun, Hot Deformation Behavior of Spray-deposited Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 53, p 79–85.

    Article  CAS  Google Scholar 

  11. T.S. Srivatsan, M. Al-Hajri, W. Hannon and V.K. Vasudevan, The Strain Amplitude-controlled Cyclic Fatigue, Deformation and Fracture Behavior of 7034 Aluminum Alloy Reinforced with Silicon Carbide Particulates, Mater. Sci. Eng., A, 2004, 379, p 181–196.

    Article  Google Scholar 

  12. T.S. Srivatsan and M. Al-Hajri, The Fatigue and Final Fracture Behavior of SiC Particle Reinforced 7034 Aluminum Matrix Composites, Compos. Part B, 2002, 33, p 391–404.

    Article  Google Scholar 

  13. C. Xu, W. Dixon, M. Furukawa, Z. Horita and T.G. Langdon, Developing Super Plasticity in a Spray-cast Aluminum 7034 Alloy through Equal-channel Angular Pressing, Mater. Lett., 2003, 57, p 3588–3592.

    Article  CAS  Google Scholar 

  14. C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, Using ECAP to Achieve Grain Refinement, Precipitate Fragmentation and High Strain Rate Super Plasticity in a Spray Cast Aluminum Alloy, Acta Mater., 2003, 51, p 6139–6149.

    Article  CAS  Google Scholar 

  15. C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, Influence of ECAP on Precipitate Distributions in a Spray-cast Aluminum Alloy, Acta Mater., 2005, 53, p 749–758.

    Article  CAS  Google Scholar 

  16. W.B. Guo, T.M. Luan, J.S. He and J.C. Yan, Ultrasonic-assisted Soldering of Fine-grained 7034 Aluminum Alloys Using Zn-Al Filler Metals, Mater. Des., 2017, 125, p 85–93.

    Article  CAS  Google Scholar 

  17. W.B. Guo, X.S. Leng, T.M. Luan, J.C. Yan and J.S. He, Ultrasonic-promoted Rapid TLP Bonding of Fine-grained 7034 High Strength Aluminum Alloys, Ultrason. Sonochem., 2017, 36, p 354–361.

    Article  CAS  Google Scholar 

  18. Q.H. Zang, H.S. Yu, Y.S. Lee, M.S. Kim and H.W. Kim, Effects of Initial Microstructure on Hot Deformation Behavior of Al-7.9Zn-2.7Mg-2.0Cu (wt%) Alloy, Mater. Charact., 2019, 151, p 404–413.

    Article  CAS  Google Scholar 

  19. W.J. Zhao, F.Y. Cao, X.L. Gu, Z.L. Ning, Y. Han and J.F. Sun, Isothermal Deformation of Spray Formed Al-Zn-Mg-Cu Alloy, Mech. Mater., 2013, 56, p 95–105.

    Article  Google Scholar 

  20. S. Murty, S.K. Manwatkar and P.R. Narayanan, Role of Metallographic Analysis in the Identification of Location of Crack Initiation in a Burst Tested AA 2219 Propellant Tank, Met. Microstruct. Anal, 2015, 4, p 392–402.

    Article  CAS  Google Scholar 

  21. M. Ferry, Influence of Fine Particles on Grain Coarsening within an Orientation Gradient, Acta Mater., 2005, 53, p 773–783.

    Article  CAS  Google Scholar 

  22. Z.X. Wang, Y.A. Zhang, B.H. Zhu, H.W. Liu, F. Wang and B.Q. Xiong, Tensile and High-cycle Fatigue Properties of Spray Formed Al10.8Zn2.9Mg1.9Cu Alloys after Two-stage Aging Treatment, Trans. Nonferrous Metals Soc. China, 2006, 16, p 808–812.

    Article  CAS  Google Scholar 

  23. H.L. He, Y.P. Yi, J.D. Cui and S.Q. Huang, Hot Deformation Characteristics and Processing Parameter Optimization of 2219 Al Alloy Using Constitutive Equation and Processing Map, Vacuum, 2019, 160, p 293–302.

    Article  CAS  Google Scholar 

  24. Y. Jiang, L. Huang and F. He, Study on T74 Two-step Aging for 7050 Aluminum Alloy, Hot Work. Technol., 2014, 43(12), p 187–190. ((in Chinese))

    Google Scholar 

  25. J.C. Li, D. Feng, W.S. Xia, W.M. Guo and G.Y. Wang, The Non-isothermal Double Aging Behavior of 7055 Aluminum Alloy, Acta Metall. Sin., 2020, 56(11), p 1495–1506.

    CAS  Google Scholar 

  26. Z.H. Chen, J. Lu, H.B. Liu and X.W. Liao, Experimental Investigation on the Post-fire Mechanical Properties of Structural Aluminum Alloys 6061–T6 and 7075–T73, Thin-Walled Struct., 2016, 106, p 187–200.

    Article  Google Scholar 

  27. H.B. Li, Y.L. Feng, T. Yan and E.L. Yu, Constitutive Model of Warm Deformation Behavior of Medium Carbon Steel, Int. J Iron Steel Res., 2016, 23, p 940–948.

    Article  Google Scholar 

  28. Y.C. Lin, S.C. Luo, L.X. Yin and J. Huang, Microstructural Evolution and High Temperature Flow Behaviors of a Homogenized Sr-modified Al-Si-Mg Alloy, J. Alloy. Compd., 2018, 739, p 590–599.

    Article  CAS  Google Scholar 

  29. Y.V.R.K. Prasad, K.P. Rao and S. Sasidhara, Hot Working Guide: Compendium of Processing Maps, 2015

  30. H.Z. Li, H.J. Wang, X.P. Liang, H.T. Liu, Y. Liu and X.M. Zhang, Hot Deformation and Processing Map of 2519A Aluminum Alloy, Mater. Sci. Eng., A, 2011, 528, p 1548–1552.

    Article  Google Scholar 

  31. Y.V.R.K. Prasad, K.P. Rao, N. Hort and K.U. Kainer, Optimum Parameters and Rate Controlling Mechanisms for Hot Working of Extruded Mg-3Sn-1Ca Alloy, Mater. Sci. Eng., A, 2009, 502, p 25–31.

    Article  Google Scholar 

  32. W.L. Cheng, Q.W. Tian, H. Yu, B.S. You and H.X. Wang, Optimum Parameters and Kinetic Analysis for Hot Working of a Homogenized Mg-8Sn-1Al-1Zn Alloy, Mater. Des., 2015, 85, p 762–770.

    Article  CAS  Google Scholar 

  33. L. Ou, Z.Q. Zheng, Y.F. Nie and H.G. Jian, Hot Deformation Behavior of 2060 Al Alloy, J. Alloy. Compd., 2015, 648, p 681–689.

    Article  CAS  Google Scholar 

  34. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258.

    Article  CAS  Google Scholar 

  35. Q.B. Yang, X.Z. Wang, X. Li, Z.H. Deng, Z.H. Jia, Z.Q. Zhang, G.J. Huang and Q. Liu, Hot Deformation Behavior and Microstructure of AA2195 Alloy under Plane Strain Compression, Mater. Charact., 2017, 131, p 500–507.

    Article  CAS  Google Scholar 

  36. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas, Dynamic and Post-dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater Sci., 2014, 60, p 130–207.

    Article  CAS  Google Scholar 

  37. H.L. He, Y.P. Yi, S.Q. Huang and Y.X. Zhang, Effects of Deformation Temperature on Second-phase Particles and Mechanical Properties of 2219 Al-Cu Alloy, Mater. Sci. Eng., A, 2018, 712, p 414–423.

    Article  CAS  Google Scholar 

  38. L. Hua, X. Hu and X.H. Han, Microstructure Evolution of Annealed 7075 Aluminum Alloy and Its Influence on Room-temperature Plasticity, Mater. Des., 2020, 196, p 109192.

    Article  CAS  Google Scholar 

  39. J.R. Zuo, L.G. Hou, J.T. Shi, H. Cui, L.Z. Zhuang and J.S. Zhang, Effect of Deformation Induced Precipitation on Grain Refinement and Improvement of Mechanical Properties AA 7055 Aluminum Alloy, Mater. Charact., 2017, 130, p 123–124.

    Article  CAS  Google Scholar 

  40. H.H. Li, Z.L. Hu, L. Hua and Q. Sun, Influence of Thermal Deformation Parameters on Mechanical Properties and Microstructure Evolution of AA7075 Aluminum Alloy during Hot Stamping-Quenching Process, JOM, 2019, 71, p 4778–4788.

    Article  CAS  Google Scholar 

  41. D.G. Brandon, The Structure of High-angle Grain Boundaries, Acta Metall., 1966, 14(11), p 1479–1484.

    Article  CAS  Google Scholar 

  42. W.L.I. Peng, Z.L.I. Hui, L. Huang, X.P. Liang and Z.X. Zhu, Characterization of Hot Deformation Behavior of AA2014 Forging Aluminum Alloy Using Processing Map, Trans. Nonferrous Metals Soc. China, 2017, 27, p 1677–1688.

    Article  Google Scholar 

  43. K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomenon in Metallic Materials, Mater. Charact., 2016, 111, p 548–574.

    CAS  Google Scholar 

  44. S. Wang, L.G. Hou, J.R. Luo, J.S. Zhang and L.Z. Zhuang, Characterization of Hot Workability in AA 7050 Aluminum Alloy Using Activation Energy and 3-D A Processing Map, J. Mater. Process. Technol., 2015, 225, p 110–121.

    Article  CAS  Google Scholar 

  45. S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang and L.Z. Zhuang, Physically Based Constitutive Analysis and Microstructural Evolution of AA7050 Aluminum Alloy during Hot Compression, Mater. Des., 2016, 107, p 277–289.

    Article  CAS  Google Scholar 

  46. S. Gourdet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51(9), p 2685–2699.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Fundamental Research Funds for the Central Universities (WHUT, no. 2019-YB-016) for the support offered to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duanyang Tian.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, D., Wang, R. & Zheng, J. Research on the Mechanical Properties and Hot Deformation Behaviors of Spray-Deposited 7034 Al Alloy Processed by Forward Extrusion. J. of Materi Eng and Perform 31, 37–52 (2022). https://doi.org/10.1007/s11665-021-06166-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06166-5

Keywords

Navigation