Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 386))

Abstract

On the atomic scale plastic strain is always localised in the form of discrete dislocations. The concept of homogeneous plastic strain has meaning only on a macroscopic or perhaps on a mesoscopic level. This chapter treats strain localisation on a macroscopic level for specimens deformed in tension and in torsion, on a mesoscopic level for ductile fracture and on an atomistic level for fracture in fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stüwe, H.P., H.O. Asbeck: Instabilitäten im Zug-und Verdrehversuch, Arch. Eisenhüttenw. 40 (1969) 125–130

    Google Scholar 

  2. Considère, M.: Die Anwendung von Eisen und Stahl bei Konstruktionen, Gerold-Verlag, Wien (1888)

    Google Scholar 

  3. Schmid, E., W. Boas: Kristallplastizität, Springer, Berlin (1935)

    Google Scholar 

  4. Toth, L.S., P. Gilormini, J.J. Jonas: Effect of rate sensitivity on the stability of torsion textures, Acta Met., 36 (1988) 3077–3091

    Article  Google Scholar 

  5. van Houtte, P., E. Aernoudt: Solution of the generalised Taylor theory of plastic flow, Z. Metallk., 66 (1975) 202–209

    Google Scholar 

  6. Stüwe, H.P., O. Kolednik: Shape instability of thin cylinders, Acta Met. 36 (1988) 1705–1708

    Article  Google Scholar 

  7. Stüwe, H.P., H. Turck: Zur Messung von Fließkurven im Torsionsversuch, Z. Metallk. 55 (1964) 699–703

    Google Scholar 

  8. Witzel, W.: Torsionsverformung von Metallen — Bewegung von Verformungsfronten bei den Aluminiumlegierungen AlCuMgPb und AICu3, Inst. f. d. wissenschaftl. Film, Göttingen, Film Nr. E 1899

    Google Scholar 

  9. Stüwe, H.P.: The work necessary to form a ductile fracture surface, Engng Fract. Mech. 13 (1980) 231–236

    Google Scholar 

  10. Stüwe, H.P.: The plastic work spent in ductile fracture, threedimensional constitutive equations and ductile fracture, Ed. S. Nemat-Nasser, North Holland Publishing Comp. (1981) 213–221

    Google Scholar 

  11. Kolednik, O., H.P. Stüwe: Abschätzung der Rißzähigkeit eines duktilen Werkstoffes aus der Gestalt der Bruchfläche, Z. Metallk. 73 (1982) 219–223

    Google Scholar 

  12. Kolednik O.: Ein Beitrag zur Stereophotogrammetrie am Rasterelektronenmikroskop, Prakt. Metallographie 18 (1981) 562–573

    Google Scholar 

  13. Kolednik, O.: Stereogrammetrische Untersuchungen des Rißwachstums bei duktilen Materialien, Gefüge und Bruch, Eds. K.L. Maurer und M. Pohl, Gebr. Borntraeger, Berlin—Stuttgart (1990) 193–198

    Google Scholar 

  14. Stampfl, J. S. Scherer, M. Gruber, O. Kolednik: Reconstruction of surface topographies by scanning electron microscopy for application in fracture research, Appl. Physics A63 (1996) 341–346

    Google Scholar 

  15. Stampfl, J., S. Scherer, M. Berchthaler, M. Gruber, O. Kolednik: Determination of the fracture toughness by automatic image processing, International J. of Fracture 78 (1996) 35–44

    Article  Google Scholar 

  16. Serdyuk, V.A., N.M. Grinberg: The plastic zone and growth of fatigue crack in Magnesium MAl2 alloy at room and low temperatures, Int. J. Fatigue 5 (1983) 79–85

    Article  Google Scholar 

  17. Davidson, D.L., J. Lankford: Fatigue crack growth in metals and alloys: mechanisms and micromechanisms, International material reviews 37 (1992) 45–76

    Google Scholar 

  18. Rice, J.R.: Mechanics of crack tip deformation and extension by fatigue, Fatigue Crack Propagation, ASTM STP 415, Am. Soc. Testing Mats. (1967) 247–311

    Google Scholar 

  19. Riemelmoser, F.O., R. Pippan: Investigation of a growing fatigue crack by means of a discrete dislocation model, Materials Science and Engineering A234–236 (1997) 135–137

    Google Scholar 

  20. Riemelmoser, F.O., R. Pippan, H.P. Stüwe: An argument for a cycle by cycle propagation of fatigue cracks at small stress intensity ranges, Acta Mat., submitted 1997

    Google Scholar 

  21. see Nabarro, F.R.N.: Theory of crystal dislocations, Eds. M.F. Mott, E.C. Bullard, D.H. Wilkinson, Oxford University Press, London (1967)

    Google Scholar 

  22. Estrin, Y. L.P. Kubin: Plastic instabilities: phenomenology and theory, Materials Science and Engineering, A 137 (1991) 125–134

    Google Scholar 

  23. Hart, E.W.: Theory of the tensile test, Acta Met. 15 (1967) 351–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Stüwe, H.P. (1998). Examples of Strain Localisation. In: Perzyna, P. (eds) Localization and Fracture Phenomena in Inelastic Solids. International Centre for Mechanical Sciences, vol 386. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2528-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2528-1_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82918-9

  • Online ISBN: 978-3-7091-2528-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics