Skip to main content
Log in

Influence of Two Different Salt Mixture Combinations of Na2SO4-NaCl-NaVO3 on Hot Corrosion Behavior of Ni-Base Superalloy Nimonic263 at 800 °C

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Isothermal hot corrosion behavior of Nimonic263 alloy was studied under the influence of two different salt mixtures of 87.5 wt.% Na2SO4 + 5 wt.% NaCl + 7.5 wt.% NaVO3 (3SM) and 74 wt.% Na2SO4 + 21.7 wt.% NaCl + 4.3 wt.% NaVO3 (3SM-A) and also without salt mixtures up to 500 h at 800 °C. Corrosion kinetics showed that 3SM-A is more aggressive than 3SM. Multiple oxides, spinels, sulfides, vanadate compounds, and volatile compounds were observed during various hot corrosion reactions. The volatile compounds NaClO3 and CrMoO3, and SO3 gas are attributed to the weight loss under both 3SMs. The Na2SO4 of 3SM prevailed till 400 h, but that of 3SM-A disappeared within 5 h, as established conclusively by Raman spectra analysis. The sulfides plus internal oxide zone increased with the increased exposure duration as evident from the extensive EPMA analysis. Based on the critical analysis of corrosion kinetics and detailed microstructural characterization, fluxing and sulfidation followed by oxidation are identified as plausible hot corrosion mechanisms under both 3SMs. Besides, chlorination and high-temperature oxidation mechanisms occur under 3SM-A condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. McLean, Nickel-Base Superalloys: Current Status and Potential, Phil. Trans. R. Soc. Lond., 1995, 351A, p 419–433

    Google Scholar 

  2. K.L. Luthra and H.S. Spacil, Impurity Deposits in Gas Turbines from Fuels Containing Sodium and Vanadium, J. Electrochem. Soc., 1982, 129, p 649–656

    Article  Google Scholar 

  3. N. Eliaz, G. Shemesh, and R.M. Latanision, Hot Corrosion in Gas Turbine Components, Eng. Fail. Anal., 2002, 9, p 31–43

    Article  Google Scholar 

  4. A.U. Seybolt, Contribution to the Study of Hot Corrosion, Trans. Met. Soc. AIME, 1968, 242, p 1955–1961

    Google Scholar 

  5. N.S. Bornstein and M.A. DeCrescente, The Role of Sodium in the Accelerated Oxidation Phenomenon Termed Sulfidation, Metall. Mater. Trans., 1971, 2, p 2875–2883

    Article  Google Scholar 

  6. N.S. Bornstein and M.A. DeCrescente, The Relationship Between Compounds of Sulfur and Sulfidation, Trans. Met. Soc. AIME, 1969, 245, p 1947–1952

    Google Scholar 

  7. J.A. Goebel, F.S. Pettit, and G.W. Goward, Mechanisms for the Hot Corrosion of Nickel-Base Alloys, Metall. Mater. Trans., 1973, 4, p 261–278

    Article  Google Scholar 

  8. J.A. Goebel and F.S. Pettit, Na2SO4-induced Accelerated Oxidation (Hot Corrosion) of Nickel, Metall. Mater. Trans., 1970, 1, p 1943–1954

    Article  Google Scholar 

  9. T.S. Sidhu, S. Prakash, and R.D. Agrawal, Hot Corrosion Behavior of HVOF-sprayed NiCrBSi Coatings on Ni- and Fe-Based Superalloys in Na2SO4-60% V2O5 Environment at 900 °C, Acta Mater., 2006, 54, p 773–784

    Article  Google Scholar 

  10. R.A. Mahesh, R. Jayaganthan, and S. Prakash, Study on Hot Corrosion Behavior of Ni–5Al Coatings on Ni- and Fe-Based Superalloys in an Aggressive Environment at 900 °C, J. Alloys Compd., 2008, 460, p 220–231

    Article  Google Scholar 

  11. S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar, Hot Corrosion Behavior of Detonation Gun Sprayed Cr3C2–NiCr Coatings on Ni and Fe-Based Superalloys in Na2SO4–60% V2O5 Environment at 900 °C, J. Alloys Compd., 2008, 463, p 358–372

    Article  Google Scholar 

  12. S. Kamal, R. Jayaganthan, and S. Prakash, High-Temperature Oxidation Studies of Detonation Gun Sprayed Cr3C2–NiCr Coatings on Ni and Fe-Based Superalloys in Air Under Cyclic Conditions at 900 °C, J. Alloys Compd., 2009, 472, p 378–389

    Article  Google Scholar 

  13. J.B. Johnson, J.R. Nicholls, R.C. Hurst, and P. Hancock, The Mechanical Properties of Surface Scales on Nickel-Base Superalloys-II. Contaminant Corrosion, Corros. Sci., 1978, 18, p 543–553

    Article  Google Scholar 

  14. D.J. Wortman, R.E. Fryxell, K.L. Luthra, and P.A. Bergman, Mechanism of Low-Temperature Hot Corrosion: Burner Rig Studies, Thin Solid Films, 1979, 64, p 281–288

    Article  Google Scholar 

  15. K.L. Luthra, Low-Temperature Hot Corrosion of Cobalt-Based Alloys: Part I. Morphology of the Reaction Product, Metall. Mater. Trans A., 1982, 13, p 1843–1852

    Article  Google Scholar 

  16. K.L. Luthra, Low-Temperature Hot Corrosion of Cobalt-Based Alloys: Part II. Reaction Mechanism, Metall. Mater. Trans A., 1982, 13, p 1853–1864

    Article  Google Scholar 

  17. S. Kameswari, The Role of NaCl in the Hot-Corrosion Behavior of the Nimonic Alloy 90, Oxid. Met., 1986, 26, p 33–44

    Article  Google Scholar 

  18. J.R. Nicholls and D.J. Stephenson, A Life Prediction Model for Coatings Based on the Statistical Analysis of Hot Salt Corrosion Performance, Corros. Sci., 1992, 33, p 1313–1325

    Article  Google Scholar 

  19. C.A.C. Sequeira and M.G. Hocking, Hot Corrosion of Nimonic 105 in Sodium Sulfate-Sodium Chloride Melts, Corrosion, 1981, 37, p 392–407

    Article  Google Scholar 

  20. R. Sivakumar, P.K. Sagar, and M.L. Bhatia, On the Electrochemical Nature of the Hot-Corrosion Attack in Ni-Cr Alloys, Oxid. Met., 1985, 24, p 315–330

    Article  Google Scholar 

  21. I. Gurrappa, Hot Corrosion Behavior of CM 247 LC Alloy in Na2SO4 and NaCl Environments, Oxid. Met., 1999, 51, p 353–382

    Article  Google Scholar 

  22. C.L. Zeng and T. Zhang, Electrochemical Impedance Study of Corrosion of B-1900 Alloy in the Presence of a Solid Na2SO4 and a Liquid 25 wt.% NaCl-75 wt.% Na2SO4 Film at 800 °C in air, Electrochim. Acta., 2004, 49, p 1429–1433

    Google Scholar 

  23. Meiheng Li, Xiaofeng Sun, Hu Wangyu, Hengrong Guan, and Shuguang Chen, Hot Corrosion of a Single Crystal Ni-Base Superalloy by Na-Salts at 900 °C, Oxid. Met., 2006, 65, p 137–150

    Article  Google Scholar 

  24. G.M. Liu, F. Yub, J.H. Tiana, and J.H. Ma, Influence of Pre-oxidation on the Hot Corrosion of M38G Superalloy in the Mixture of Na2SO4-NaCl Melts, Mater. Sci. Eng. A, 2008, 496, p 40–44

    Article  Google Scholar 

  25. T.S. Sidhu, A. Malik, S. Prakash, and R.D. Agrawal, Cyclic Oxidation Behavior of Ni- and Fe-Based Superalloys in the Air and Na2SO4-25%NaCl Molten Salt Environment at 800 °C, Int. J. Phys. Sci., 2006, 1, p 27–33

    Google Scholar 

  26. K. Zhang, M.M. Liu, S.L. Liu, C. Sun, and F.H. Wang, Hot Corrosion Behavior of a Cobalt-Base Super-Alloy K40S with and without NiCrAlYSi Coating, Corros. Sci., 2011, 53, p 1990–1998

    Article  Google Scholar 

  27. Lei Zheng, Zhang Maicanga, and Dong Jianxin, Hot Corrosion Behavior of Powder Metallurgy Rene 95 Nickel-Based Superalloy in Molten NaCl-Na2SO4 Salts, Mater. Des., 2011, 32, p 1981–1989

    Article  Google Scholar 

  28. G.S. Mahobia, Neeta Paulose and Vakil Singh, Hot Corrosion Behavior of Superalloy IN718 at 550 and 650 °C, J. Mater. Eng. Perform., 2013, 22, p 2418–2435

    Article  Google Scholar 

  29. V. Mannava, A.S. Rao, N. Paulose, M. Kamaraj, and R.S. Kottada, Hot Corrosion Studies on Ni-Base Superalloy at 650 °C Under Marine-like Environment Conditions Using Three Salt Mixture (Na2SO4+NaCl+NaVO3), Corros. Sci., 2016, 105, p 109–119

    Article  Google Scholar 

  30. M.S. Doolabi, B. Ghasemi, S.K. Sadrnezhaad, A. Habibollahzadeh, and K. Jafarzadeh, Hot Corrosion Behavior and Near-Surface Microstructure of a Low-Temperature High-Activity Cr-Aluminide Coating on Inconel 738LC Exposed to Na2SO4, Na2SO4 + V2O5, and Na2SO4 + V2O5 + NaCl at 900 °C, Corros. Sci., 2017, 128, p 42–53

    Article  Google Scholar 

  31. Dhananjay Pradhan, G.S. Mahobia, K. Chattopadhyay, and V. Singh, Effect of Surface Roughness on Corrosion Behavior of the Superalloy IN718 in the Simulated Marine Environment, J. Alloys Compd., 2018, 740, p 250–263

    Article  Google Scholar 

  32. D. Pradhan, G.S. Mahobia, K. Chattopadhyay, and V. Singh, Severe Hot Corrosion of the Superalloy IN718 in Mixed Salts of Na2SO4 and V2O5 at 750 °C, J. Mater. Eng. Perform., 2018, 27, p 4235–4243

    Article  Google Scholar 

  33. F. Saegusa and D.A. Shores, The Corrosion Resistance of Superalloys in Temperature Range of 800-1300 °F, J. Mater. Energy Syst., 1982, 4, p 16–27

    Article  Google Scholar 

  34. A. Manonukul and D. Knowles, a Physically-Based Model for Creep in Nickel-Base Superalloy C263 both above and below the Gamma Solvus, Acta Mater., 2002, 50, p 2917–2931

    Article  Google Scholar 

  35. V. Mannava, A.V. Swaminathan, M. Kamaraj, and R.S. Kottada, An Innovative Spraying Setup to Obtain Uniform Salt(s) Mixture Deposition to Investigate Hot Corrosion, Rev. Sci. Instrum., 2016, 87, p 25107

    Article  Google Scholar 

  36. B.D. Hosterman, Raman Spectroscopic Study of Solid Solution Spinel Oxides, Ph.D. Thesis, University of Nevada, Las Vegas, 2016.

  37. D. Zákutná, A. Repko, I. Matulková, D. Nižňanský, A. Ardu, C. Cannas, A. Mantlíková, and J. Vejpravová, Hydrothermal Synthesis, Characterization, and Magnetic Properties of Cobalt Chromite Nanoparticles, J. Nanopart. Res., 2014, 16(2251), p 1–14

    Google Scholar 

  38. D.W. Bishop, P.S. Thomas, and A.S. Ray, Raman Spectra of Nickel (II) Sulfide, Mater. Res. Bull., 1998, 33, p 1303–1306

    Article  Google Scholar 

  39. B.L. Hurley, S. Qiu, and R.G. Buchheit, Raman Spectroscopy Characterization of Aqueous Vanadate Species Interaction with Aluminum Alloy 2024-T3 Surfaces, J. Electrochem. Soc., 2011, 158, p C125–C131

    Article  Google Scholar 

  40. Laura E. Briand, Jih-Mirn Jehng, Laura Cornaglia, Andrew M. Hirt, and Israel E. Wachs, Quantitative Determination of the Number of Surface Active Sites and the Turnover Frequencies for Methanol Oxidation Over Bulk Metal Vanadates, Catal. Today, 2003, 78, p 257–268

    Article  Google Scholar 

  41. V.G. Hadjiev, M.N. Iliev, and I.V. Vergilov, The Raman Spectra of Co3O4, J. Phys. C: Solid State Phys., 1988, 21, p L199–L201

    Article  Google Scholar 

  42. B.-K. Choi and D.J. Lockwood, Raman Spectrum of Na2SO4 (Phases I, and II), Solid State Commun., 1990, 76, p 863–866

    Article  Google Scholar 

  43. B.-K. Choi and D.J. Lockwood, Raman Spectrum of Na2SO4 (Phase V), Solid State Commun., 1989, 72, p 133–137

    Article  Google Scholar 

  44. K.S. Ghosh and S. Raghavan, Fusion Point Diagram of Na2SO4-NaVO3-NaCl System, Trans. Indian Inst. Metals., 1995, 48, p 401–408

    Google Scholar 

  45. P.S. Sidky and M.G. Hocking, The Hot Corrosion of Ni-Based Ternary Alloys and Superalloys for Application in Gas Turbines Employing Residual Fuels, Corros. Sci., 1987, 27, p 499–530

    Article  Google Scholar 

  46. O. Kubaschewski and C.B. Alocock, Metallurgical Thermo-Chemistry, revised, 5th ed., Pergamon Press Publisher, New York, 1983

    Google Scholar 

  47. C.C. Tsaur, J.C. Rock, C.J. Wang, and Y.H. Su, The Hot Corrosion of 310 Stainless Steel with Pre-coated NaCl/Na2SO4 Mixtures at 750 °C, Mater. Chem. Phys., 2005, 89, p 445–453

    Article  Google Scholar 

  48. R.A. Rapp, Hot Corrosion of Materials: a Fluxing Mechanism?, Corros. Sci., 2002, 44, p 209–221

    Article  Google Scholar 

  49. M. Seiersten and P. Kofstad, The Effect of SO3 on Vanadate-Induced Hot Corrosion, High Temp. Technol., 1984, 5, p 115–122

    Article  Google Scholar 

  50. E. Otero, A. Pardo, J. Hernaez, and F.J. Perez, The Hot Corrosion of in-657 Superalloy in Na2SO4-V2O5 Melt Eutectic, Corros. Sci., 1991, 32, p 677–683

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. M. Premkumar, Scientist-D, and Mr. Nikentan Vaidya, a Technical officer of DMRL, for their help in facilitating the EPMA facility and their valuable time to conduct EPMA characterization on hot corroded specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateswararao Mannava.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannava, V., SambasivaRao, A., Kamaraj, M. et al. Influence of Two Different Salt Mixture Combinations of Na2SO4-NaCl-NaVO3 on Hot Corrosion Behavior of Ni-Base Superalloy Nimonic263 at 800 °C. J. of Materi Eng and Perform 28, 1077–1093 (2019). https://doi.org/10.1007/s11665-019-3866-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-3866-4

Keywords

Navigation