Skip to main content

Advertisement

Log in

Properties of Equivalent Source Distributions Useful for Inverse Thermal Analysis

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A general approach for inverse thermal analysis of heat deposition processes is parametric modeling of such processes using effective or equivalent source distributions (ESDs). ESDs can be adjusted conveniently for calculation of temperature fields, which are constrained according to boundary and temperature constraint conditions. This study applies properties of ESDs useful for parametric modeling of heat deposition processes. Inverse thermal analysis of a friction stir weld is presented, which is prototypical of processes tending to be complex with respect to energy deposition morphology. This analysis demonstrates properties of ESDs providing relatively optimal parametric modeling of energy deposition processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.N. Ozisik and H.R.B. Orlande, Inverse Heat Transfer, Fundamentals and Applications, Taylor and Francis, New York, 2000

    Google Scholar 

  2. K. Kurpisz and A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Boston, 1995

    Google Scholar 

  3. O.M. Alifanov, Inverse Heat Transfer Problems, Springer, Berlin, 1994

    Book  Google Scholar 

  4. J.V. Beck, B. Blackwell, and C.R. St, Clair, Inverse Heat Conduction: Ill-Posed Problems, Wiley Interscience, New York, 1985

    Google Scholar 

  5. J.V. Beck, Inverse Problems in Heat Transfer with Application to Solidification and Welding, Modeling of Casting, Welding and Advanced Solidification Processes, Vol The, Minerals , M. Rappaz, M.R. Ozgu, and K.W. Mahin, Ed., Metals and Materials Society, Pittsburgh, 1991, p 427–437

    Google Scholar 

  6. J.V. Beck, Inverse Problems in Heat Transfer, Mathematics of Heat Transfer, G.E. Tupholme and A.S. Wood, Ed., Clarendon Press, Oxford, 1998, p 13–24

    Google Scholar 

  7. S.G. Lambrakos, Parametric Modeling of Welding Processes Using Numerical-Analytical Basis Functions and Equivalent Source Distributions, J. Mater. Eng. Perform., 2016, 25(4), p 1360–1375

    Article  Google Scholar 

  8. S.G. Lambrakos, Inverse Thermal Analysis of Welds Using Multiple Constraints and Relaxed Parameter Optimization, J. Mater. Eng. Perform., 2015, 24(8), p 2925–2936

    Article  Google Scholar 

  9. S.G. Lambrakos, Inverse Thermal Analysis of Stainless Steel Deep-Penetration Welds Using Volumetric Constraints, J. Mater. Eng. Perform., 2014, 23(6), p 2219–2232. https://doi.org/10.1007/s11665-014-1023-7

    Article  Google Scholar 

  10. S.G. Lambrakos, A. Shabaev, and L. Huang, Inverse Thermal Analysis of a Titanium Laser Weld Using Multiple Constraint Conditions, J. Mater. Eng. Perform., 2014, https://doi.org/10.1007/s11665-014-1021-9

    Google Scholar 

  11. R.W. Fonda and S.G. Lambrakos, Analysis of Friction Stir Welds Using an Inverse-Problem Approach, Sci. Technol. Weld. Join., 2002, 7(3), p 177–181

    Article  Google Scholar 

  12. S.G. Lambrakos, R.W. Fonda, J.O. Milewski, and J.E. Mitchell, Analysis of Friction Stir Welds Using Thermocouple Measurements, Sci. Technol. Weld. Join., 2003, 8, p 345

    Article  Google Scholar 

  13. S.G. Lambrakos, Inverse Thermal Analysis of Ti-6AL-4V Friction Stir Welds Using Numerical-Analytical Basis Functions with Pseuda-Advection, J. Mater. Eng. Perform., 2018, https://doi.org/10.1007/s11665-018-3377-8

    Google Scholar 

  14. J.N. Wolk, Microstructural Evolution in Friction Stir Welding of Ti 5111, Doctoral Thesis, University of Maryland, College Park, 2010

  15. D. Rosenthal, The Theory of Moving Sources of Heat and Its Application to metal treatments, Trans. ASME, 1946, 68, p 849–866

    Google Scholar 

  16. R.O. Myhr and O. Grong, Dimensionless Maps for Heat Flow Analysis in Fusion Welding, Acta Metall. Mater., 1990, 38, p 449–460

    Article  Google Scholar 

  17. C.G. Prosgolitis, S.G. Lambrakos, and A.D. Zervaki, Phase-Field Modeling of Nugget Zone for a AZ31-Mg-Alloy Friction Stir Weld, J. Mater. Eng. Perform., 2018, 27(10), p 5102–5113

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Naval Research Laboratory (NRL) internal core program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Lambrakos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambrakos, S.G. Properties of Equivalent Source Distributions Useful for Inverse Thermal Analysis. J. of Materi Eng and Perform 28, 4894–4902 (2019). https://doi.org/10.1007/s11665-019-04241-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04241-6

Keywords

Navigation