Skip to main content
Log in

A Comparative Study on Microstructure, Mechanical and Tribological Properties of A4, AE41, AS41 and AJ41 Magnesium Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure, tensile and wear properties of as-cast A4 (Mg-4Al), AE41 (Mg-4Al-0.5Ce-0.5La), AS41 (Mg-4Al-1Si) and AJ41 (Mg-4Al-1Sr) alloys were investigated, and the results were compared with each other in this study. Microstructures were investigated by XRD, optical and scanning electron microscopes. Tensile tests were conducted at both room and elevated temperatures. Tribological properties were examined by pin-on-disk wear tests under different applied loads. Microstructure characterizations revealed that the volume fraction of second phases considerably increased by alloying additions of 1 wt.% Ce/La, Si and Sr. The microstructure of A4 alloy consisted of α-Mg grains and divorced β-Mg17Al12 phases. After individual alloying additions of 1 wt.% Ce/La, Si and Sr, the secondary phases were primarily replaced by needle-shaped and massive blocky-shaped Al11(Ce,La)3 phases in AE41 alloy, Chinese-script-type Mg2Si phases in AS41 alloy and divorced globular-like and massive blocky-shaped Al4Sr and (Mg,Al)17Sr2 phases in AJ41 alloy. The tensile tests showed that at both room and elevated temperatures alloying additions of 1 wt.% Ce/La, Si and Sr resulted in an increase in the strength but a decrease in the ductility. Among the studied alloys, AS41 alloy exhibited the best strength. Wear test results showed that AE41 and AJ41 alloys similarly exhibited the best wear resistance owing to the presence of hard and dense intermetallics. Abrasion was the main wear mechanism under low applied loads while delamination, adhesion and oxidation mechanisms were majorly observed under high applied loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Russell Township, 1999

    Google Scholar 

  2. F. Pan, M. Yang, and X. Chen, A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys, J. Mater. Sci. Technol., 2016, 32(12), p 1211–1221

    Article  Google Scholar 

  3. A.A. Luo, Magnesium Casting Technology for Structural Applications, J. Magn. Alloys, 2013, 1(1), p 2–22

    Article  CAS  Google Scholar 

  4. L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals: Structure and Properties, CRC Press, Boca Raton, 2003

    Google Scholar 

  5. N. Hort, Y. Huang, and K.U. Kainer, Intermetallics in Magnesium Alloys, Adv. Eng. Mater., 2006, 8(4), p 235–240

    Article  CAS  Google Scholar 

  6. S. Zhu, M.A. Easton, T.B. Abbott, J.-F. Nie, M.S. Dargusch, N. Hort, and M.A. Gibson, Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Microstructure, Tensile Properties, and Creep Resistance, Metall. Mat. Trans. A, 2015, 46(8), p 3543–3554

    Article  CAS  Google Scholar 

  7. M.O. Pekguleryuz and E. Baril, Development of creep resistant Mg-Al-Sr alloys, Essential Readings in Magnesium Technology, S.N. Mathaudhu, A.A. Luo, N.R. Neelameggham, E.A. Nyberg, and W.H. Sillekens, Ed., Springer, Cham, 2016, p 283–289 https://doi.org/10.1007/978-3-319-48099-2_46

    Chapter  Google Scholar 

  8. J. Bai, Y. Sun, F. Xue, and J. Qiang, Microstructures and Creep Properties of Mg–4Al–(1–4) La Alloys Produced by Different Casting Techniques, Mater. Sci. Eng. A, 2012, 552, p 472–480

    Article  CAS  Google Scholar 

  9. J. Zhang, Z. Leng, M. Zhang, J. Meng, and R. Wu, Effect of Ce on Microstructure, Mechanical Properties and Corrosion Behavior of High-Pressure Die-Cast Mg–4Al-Based Alloy, J. Alloys Compd., 2011, 509(3), p 1069–1078

    Article  CAS  Google Scholar 

  10. J. Zhang, S. Liu, Z. Leng, M. Zhang, J. Meng, and R. Wu, Microstructures and Mechanical Properties of Heat-Resistant HPDC Mg–4Al-Based Alloys Containing Cheap Misch Metal, Mater. Sci. Eng. A, 2011, 528(6), p 2670–2677

    Article  Google Scholar 

  11. L. Chenghao, W. Shusen, H. Naibao, Z. Zhihong, Z. Shuchun, and R. Jing, Effects of Lanthanum and Cerium Mixed Rare Earth Metal on Abrasion and Corrosion Resistance of AM60 Magnesium Alloy, Rare Metal Mater. Eng., 2015, 44(3), p 521–526

    Article  Google Scholar 

  12. A. Luo and M.O. Pekguleryuz, Cast Magnesium Alloys for Elevated Temperature Applications, J. Mater. Sci., 1994, 29(20), p 5259–5271

    Article  CAS  Google Scholar 

  13. M.S. Dargusch, G.L. Dunlop, A.L. Bowles, K. Pettersen, and P. Bakke, The Effect of Silicon Content on the Microstructure and Creep Behavior in Die-Cast Magnesium AS Alloys, Metall. Mat. Trans. A, 2004, 35(6), p 1905–1909

    Article  Google Scholar 

  14. W. Blum, P. Zhang, B. Watzinger, B. Grossmann, and H.G. Haldenwanger, Comparative Study of Creep of the Die-Cast Mg-Alloys AZ91, AS21, AS41, AM60 and AE42, Mater. Sci. Eng. A, 2001, 319–321, p 735–740

    Article  Google Scholar 

  15. E. Baril, P. Labelle, and M. Pekguleryuz, Elevated Temperature Mg-Al-Sr: Creep Resistance, Mechanical Properties, and Microstructure, JOM, 2003, 55(11), p 34–39

    Article  CAS  Google Scholar 

  16. B. Jing, S. Yangshan, X. Shan, X. Feng, and Z. Tianbai, Microstructure and Tensile Creep Behavior of Mg–4Al Based Magnesium Alloys with Alkaline-Earth Elements Sr and Ca Additions, Mater. Sci. Eng. A, 2006, 419(1), p 181–188

    Article  Google Scholar 

  17. B. Wang, X. Wang, J. Zhou, G. Zhang, and F. Liu, Effects of Solution Heat Treatment on Microstructure and Mechanical Properties of Mg-3Al-1Si-0.3Mn-XSr Alloy, Mater. Sci. Eng. A, 2014, 618, p 210–218

    Article  CAS  Google Scholar 

  18. P. Kumar, A.K. Mondal, S.G. Chowdhury, G. Krishna, and A.K. Ray, Influence of Additions of Sb and/or Sr on Microstructure and Tensile Creep Behaviour of Squeeze-Cast AZ91D Mg Alloy, Mater. Sci. Eng. A, 2017, 683, p 37–45

    Article  CAS  Google Scholar 

  19. A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. StJohn, Development of the As-Cast Microstructure in Magnesium-Aluminium Alloys, J. Light Met., 2001, 1(1), p 61–72

    Article  Google Scholar 

  20. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Fundamentals and Advances in Magnesium Alloy Corrosion, Prog. Mater Sci., 2017, 89(Supplement C), p 92–193

    Article  CAS  Google Scholar 

  21. M. Mabuchi and K. Higashi, Strengthening Mechanisms of Mg-Si Alloys, Acta Mater., 1996, 44(11), p 4611–4618

    Article  CAS  Google Scholar 

  22. S. Candan and E. Candan, A Comparative Study on Corrosion of Mg-Al-Si Alloys, Trans. Nonferr. Met. Soc. China, 2017, 27(8), p 1725–1734

    Article  CAS  Google Scholar 

  23. L. Wu, F. Pan, M. Yang, and R. Cheng, An Investigation of Second Phases in As-Cast AZ31 Magnesium Alloys with Different Sr Contents, J. Mater. Sci., 2013, 48(16), p 5456–5469

    Article  CAS  Google Scholar 

  24. M. Aljarrah, M. Medraj, J. Li, and E. Essadiqi, Phase Equilibria of the Constituent Ternaries of the Mg-Al-Ca-Sr System, JOM, 2009, 61(5), p 68–74

    Article  CAS  Google Scholar 

  25. H. Zengin, Y. Turen, H. Ahlatci, and Y. Sun, Microstructure, Mechanical Properties and Corrosion Resistance of as-Cast and as-Extruded Mg–4Zn–1La Magnesium Alloy, Rare Met., 2018. https://doi.org/10.1007/s12598-018-1045-7

    Article  Google Scholar 

  26. M.S. Yoo, K.S. Shin, and N.J. Kim, Effect of Mg2Si Particles on the Elevated Temperature Tensile Properties of Squeeze-Cast Mg-Al Alloys, Metall. Mat. Trans. A, 2004, 35(5), p 1629

    Article  Google Scholar 

  27. J.S. Chun and J.G. Byrne, Precipitate Strengthening Mechanisms in Magnesium Zinc Alloy Single Crystals, J. Mater. Sci., 1969, 4(10), p 861–872

    Article  CAS  Google Scholar 

  28. M. Badri, S.M. Miresmaeili, and B. Nami, Microstructure and Impression Creep Properties of Ca-Containing AS31 Magnesium Alloy, Acta Metall. Sin. (Engl. Lett.), 2016, 29(12), p 1089–1097

    Article  CAS  Google Scholar 

  29. M.O. Pekguleryuz, K. Kainer, and A.A. Kaya, Fundamentals of Magnesium Alloy Metallurgy, Elsevier, Amsterdam, 2013

    Book  Google Scholar 

  30. J.F. Archard, Elastic Deformation and the Laws of Friction, Proc. R. Soc. Lond. A, 1957, 243(1233), p 190–205

    Article  Google Scholar 

  31. F. Aydin, Y. Sun, H. Ahlatci, and Y. Turen, Investigation of Microstructure, Mechanical and Wear Behaviour of B4C Particulate Reinforced Magnesium Matrix Composites by Powder Metallurgy, Trans. Indian Inst. Met., 2018, 71(4), p 873–882

    Article  CAS  Google Scholar 

  32. M.E. Turan, Y. Sun, and Y. Akgul, Improved Wear Properties of Magnesium Matrix Composite with the Addition of Fullerene Using Semi Powder Metallurgy, Fuller. Nanotub. Carbon Nanostruct., 2018, 26(2), p 130–136

    Article  CAS  Google Scholar 

  33. F. Aydin and Y. Sun, Investigation of Wear Behaviour and Microstructure of Hot-Pressed TiB2 Particulate-Reinforced Magnesium Matrix Composites, Can. Metall. Q., 2018, 57(4), p 455–469

    Article  CAS  Google Scholar 

  34. A. Zafari, H.M. Ghasemi, and R. Mahmudi, An Investigation on the Tribological Behavior of AZ91 and AZ91 + 3wt% RE Magnesium Alloys at Elevated Temperatures, Mater. Des., 2014, 54, p 544–552

    Article  CAS  Google Scholar 

  35. C. Taltavull, P. Rodrigo, B. Torres, A.J. López, and J. Rams, Dry Sliding Wear Behavior of AM50B Magnesium Alloy, Mater. Des., 2014, 56, p 549–556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Scientific Research Projects of Karabuk University (BAP) with Project No. KBUBAP-18-DS-184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Zengin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zengin, H., Turen, Y. & Elen, L. A Comparative Study on Microstructure, Mechanical and Tribological Properties of A4, AE41, AS41 and AJ41 Magnesium Alloys. J. of Materi Eng and Perform 28, 4647–4657 (2019). https://doi.org/10.1007/s11665-019-04223-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04223-8

Keywords

Navigation