Skip to main content

Advertisement

Log in

Effect of Ca Addition to the Elevated Temperature Mechanical Properties of AZ Series Magnesium Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, in order to investigate the effect of Ca addition on elevated temperature mechanical properties of AZ series magnesium alloys, 3 different alloys (AZ21, AZX211, and AZX311) were produced. Elemental and phase analyses along with microstructural characterization were performed by using XRF, XRD, optical microscope, and SEM-EDS. Tensile and wear tests were conducted at 25 °C, 150 °C, and 200 °C for the purpose of revealing the room and elevated temperature service condition performances of the alloys which were followed by the application of hardness measurement applied at 25 °C to the alloys. It was observed that while the microstructure of AZ21 alloy contained only α-Mg, the microstructures of AZX211 and AZX311 alloys contained α-Mg, (Mg, Al)2Ca and Al2Ca due to the addition of Ca. Furthermore, the strengths of AZX211 alloy were better for all temperatures, especially at 25 °C with 152 ± 5.4 MPa tensile strength and 95 ± 4.1 MPa yield strength, and also it had the lowest hardness (51.6 ± 1.3 HV) as compared to the other alloys. When all temperatures wear rates were compared, the AZX211 alloy was understood to have a stable wear rate for all applied load values, especially under 40 N applied load for 22.826 ± 0.730 × 10−3 mm3/m at 25 °C, 21.201 ± 0.758 × 10−3 mm3/m at 150 °C and 24.768 ± 0.326 × 10−3 mm3/m at 200 °C test temperatures, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. H. Hao, Casting technology and quality ımprovement of magnesium alloys. Spec. Issues Magnes. Alloys. 1–24 (2011)

  2. D. Kumar, R.K. Phanden, L. Thakur, A review on environment friendly and lightweight magnesium-based metal matrix composites and alloys. Mater. Today Proc. 38, 359–364 (2021). https://doi.org/10.1016/j.matpr.2020.07.424

    Article  CAS  Google Scholar 

  3. N. Loukil, Alloying elements of magnesium alloys: a literature review. Magnes. Alloys. (2021)

  4. B.R. Powell, A.A Luo, V. Rezhets, J.J. Bommarito, B.L. Tiwari, Development of creep-resistant magnesium alloys for powertrain applications: Part 1 of 2. SAE Trans. 406–413 (2001). http://www.jstor.org/stable/44699797

  5. P. Prakash, M.A. Wells, B.W. Williams, Hot deformation of cast AZ31 and AZ80 magnesium alloys–ınfluence of Al content on microstructure and texture development. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.162876

    Article  Google Scholar 

  6. S. Joshi, R.C. Singh, R. Chaudhary, Effect of rotational speed in friction stir processing on the microstructural and mechanical characteristics of cast AS21A magnesium alloy. Mater. Res. Express. 6, 056554 (2019). https://doi.org/10.1088/2053-1591/ab0633

    Article  CAS  Google Scholar 

  7. A.A. Luo, R.K. Mishra, B.R. Powell, A.K. Sachdev, Magnesium alloy development for automotive applications. Mater Sci Forum. (2012). https://doi.org/10.4028/www.scientific.net/MSF.706-709.69

    Article  Google Scholar 

  8. W. Zheng, S.S. Li, B. Tang, D.B. Zheng, Microstructure and properties of Mg–Al binary alloys. China Foundry. 3, 270–274 (2006)

    CAS  Google Scholar 

  9. K. Kadali, D. Dubey, R. Sarvesha, H. Kancharla, J. Jain, K. Mondal, S.S. Singh, Dissolution kinetics of Mg 17 Al 12 eutectic phase and its effect on corrosion behavior of As-Cast AZ80 magnesium alloy. JOM. 71, 2209–2218 (2019). https://doi.org/10.1007/s11837-019-03470-3

    Article  CAS  Google Scholar 

  10. F. Kabirian, R. Mahmudi, Effects of Zr additions on the microstructure and impression creep behavior of AZ91 magnesium alloy. Metall. Mater. Trans. A. 41, 3488–3498 (2010). https://doi.org/10.1007/s11661-010-0398-9

    Article  CAS  Google Scholar 

  11. J. Rawles, S. Fialkova, Z. Xu, J. Sankar, Effect of Alloying Elements Concentration and Processing Parameters on the Structural and Mechanical Properties of Lightweight Magnesium Alloys. In: ASME International Mechanical Engineering Congress and Exposition. p. V003T03A011. American Society of Mechanical Engineers (2020). https://doi.org/10.1115/IMECE2020-24598

  12. A. Incesu, A. Gungor, Mechanical properties and biodegradability of Mg–Zn–Ca alloys: homogenization heat treatment and hot rolling. J. Mater. Sci. Mater. Med. 31, 1–12 (2020). https://doi.org/10.1007/s10856-020-06468-5

    Article  CAS  Google Scholar 

  13. Z. Jiang, B. Jiang, J. Zhang, J. Dai, Q. Yang, Y. Qin, F. Pan, Effect of Al2Ca intermetallic compound addition on grain refinement of AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China. 26, 1284–1293 (2016). https://doi.org/10.1016/S1003-6326(16)64229-2

    Article  CAS  Google Scholar 

  14. U.M. Chaudry, K. Hamad, Y.G. Ko, Effect of calcium on the superplastic behavior of AZ31 magnesium alloy. Mater. Sci. Eng. A. 815, 140874 (2021). https://doi.org/10.1016/j.msea.2021.140874

    Article  CAS  Google Scholar 

  15. L.A. Villegas-Armenta, P. Wanjara, J. Gholipour, I. Nakatsugawa, Y. Chino, M. Pekguleryuz, Linear friction welding of an AZ91 magnesium alloy and the effect of Ca additions on the weld characteristics. Materials. 14, 3130 (2021). https://doi.org/10.3390/ma14113130

    Article  CAS  Google Scholar 

  16. K.B. Kim, J.H. Lee, K.H. Kim, Effect of Ca addition on microstructure of AZ61 magnesium alloy during high-temperature deformation, in Magnesium 2021. ed. by A. Luo, M. Pekguleryuz, S. Agnew, J. Allison, K. Kainer, E. Nyberg, W. Poole, K. Sadayappan, B. Williams, S. Yue (Springer, 2021), pp.141–148. https://doi.org/10.1007/978-3-030-72432-0_14

    Chapter  Google Scholar 

  17. D. Kumar, J. Jain, N.N. Gosvami, Macroscale to nanoscale tribology of magnesium-based alloys: a review. Tribol. Lett. 70, 1–29 (2022). https://doi.org/10.1007/s11249-022-01568-5

    Article  Google Scholar 

  18. A. Zafari, H.M. Ghasemi, R. Mahmudi, Effect of rare earth elements addition on the tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear 303, 98–108 (2013). https://doi.org/10.1016/j.wear.2013.02.016

    Article  CAS  Google Scholar 

  19. A. Incesu, A. Gungor, Effect of different heat treatment conditions on microstructural and mechanical behaviour of AZ63 magnesium alloy. Adv. Mater. Process. Technol. 1, 243–253 (2015). https://doi.org/10.1080/2374068X.2015.1121709

    Article  Google Scholar 

  20. M. Paradis, A.M. Samuel, H.W. Doty, F.H. Samuel, Inclusion measurement and identification in Mg-based alloys: application of the brightimeter technique. Int. J. Met. 12, 2–19 (2018). https://doi.org/10.1007/s40962-016-0130-7

    Article  Google Scholar 

  21. A. Incesu, A. Gungor, Biocorrosion and mechanical properties of ZXM100 and ZXM120 magnesium alloys. Int. J. Met. 13, 905–914 (2019). https://doi.org/10.1007/s40962-019-00308-1

    Article  CAS  Google Scholar 

  22. E. Koç, A. Incesu, A.N. Saud, Comparative study on dry and bio-corrosive wear behavior of Mg-xAl-3Zn Alloys (x= 0.5-1-2-3 wt%). J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-021-06144-x

    Article  Google Scholar 

  23. H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, E. Hamzah, Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater. Des. 53, 283–292 (2014). https://doi.org/10.1016/j.matdes.2013.06.055

    Article  CAS  Google Scholar 

  24. S. Candan, M. Unal, E. Koc, Y. Turen, E. Candan, Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy. J. Alloys Compd. 509, 1958–1963 (2011). https://doi.org/10.1016/j.jallcom.2010.10.100

    Article  CAS  Google Scholar 

  25. L. Lai, K. Zhang, M.L. Ma, G.L. Shi, Effect of heat treatment on microstructures and properties of AZ40M Alloy. Mater. Sci. Forum. (2016). https://doi.org/10.4028/www.scientific.net/MSF.849.173

    Article  Google Scholar 

  26. S. Pawar, X. Zhou, T. Hashimoto, G.E. Thompson, G. Scamans, Z. Fan, Investigation of the microstructure and the influence of iron on the formation of Al8Mn5 particles in twin roll cast AZ31 magnesium alloy. J. Alloys Compd. 628, 195–198 (2015). https://doi.org/10.1016/j.jallcom.2014.12.028

    Article  CAS  Google Scholar 

  27. L. Nastac, N. El-Kaddah, Microstructure evolution of cast mg az31b alloy at low superheat. Int. J. Met. 7, 39–48 (2013). https://doi.org/10.1007/BF03355543

    Article  CAS  Google Scholar 

  28. Y. Liu, N. Wang, J. Wang, B. Ma, D. Zhao, Investigation of the crystallographic structure and orientations of the Al2Ca phase in a Mg-Al-Ca-Mn alloy. Mater. Charact. 142, 377–382 (2018). https://doi.org/10.1016/j.matchar.2018.05.047

    Article  CAS  Google Scholar 

  29. A. Suzuki, N.D. Saddock, J.W. Jones, T.M. Pollock, Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys. Acta Mater. 53, 2823–2834 (2005). https://doi.org/10.1016/j.actamat.2005.03.001

    Article  CAS  Google Scholar 

  30. F. Wang, T. Hu, Y. Zhang, W. Xiao, C. Ma, Effects of Al and Zn contents on the microstructure and mechanical properties of Mg-Al-Zn-Ca magnesium alloys. Mater. Sci. Eng. A. 704, 57–65 (2017). https://doi.org/10.1016/j.msea.2017.07.060

    Article  CAS  Google Scholar 

  31. A.A. Luo, B.R. Powell, M.P. Balogh, Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall. Mater. Trans. A. 33, 567–574 (2002). https://doi.org/10.1007/s11661-002-0118-1

    Article  Google Scholar 

  32. S. Zhu, M.A. Easton, T.B. Abbott, J.-F. Nie, M.S. Dargusch, N. Hort, M.A. Gibson, Evaluation of magnesium die-casting alloys for elevated temperature applications: microstructure, tensile properties, and creep resistance. Metall. Mater. Trans. A. 46, 3543–3554 (2015). https://doi.org/10.1007/s11661-015-2946-9

    Article  CAS  Google Scholar 

  33. L. Fu, Q. Le, Y. Tang, J. Sun, Y. Jia, Z. Song, Effect of Ca and RE additions on microstructures and tensile properties of AZ31 alloys. Mater. Res. Express. 5, 056521 (2018). https://doi.org/10.1088/2053-1591/aac35b

    Article  CAS  Google Scholar 

  34. A. Zafari, H.M. Ghasemi, R. Mahmudi, Tribological behavior of AZ91D magnesium alloy at elevated temperatures. Wear 292, 33–40 (2012). https://doi.org/10.1016/j.wear.2012.06.002

    Article  CAS  Google Scholar 

  35. A. Galiyev, R. Kaibyshev, T. Sakai, Continuous dynamic recrystallization magnesium alloy. Mater. Sci. Forum (2003). https://doi.org/10.4028/www.scientific.net/MSF.419-422.509

    Article  Google Scholar 

  36. J. An, Y.X. Zhang, X.X. Lv, Tribological characteristics of Mg–3Al–0.4 Si–0.1 Zn alloy at elevated temperatures of 50–200 C. Tribol. Lett. 66, 1–17 (2018). https://doi.org/10.1007/s11249-017-0968-8

    Article  CAS  Google Scholar 

  37. W. Guo, N. Li, J. Zhou, L. Liu, L. Tian, L. Chen, F. Zaïri, N. Ding, Flow Curve and microstructure analysis of a ZK60 magnesium alloy during hot compression tests. Metallogr. Microstruct. Anal. 10, 46–54 (2021). https://doi.org/10.1007/s13632-020-00707-5

    Article  CAS  Google Scholar 

  38. J.H. Jun, Effect of solution treatment on mechanical properties of cast AZ91-(Ca). Alloys Arch. Metall. Mater. (2019). https://doi.org/10.24425/amm.2019.126247

    Article  Google Scholar 

  39. Y.C. Lee, A.K. Dahle, D.H. StJohn, The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A. 31, 2895–2906 (2000). https://doi.org/10.1007/BF02830349

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific Research Projects Coordination Unit of Karabuk University [Project No: KBÜBAP-21-YL-064].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Incesu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokalp, I., Incesu, A. Effect of Ca Addition to the Elevated Temperature Mechanical Properties of AZ Series Magnesium Alloys. Inter Metalcast 17, 1402–1412 (2023). https://doi.org/10.1007/s40962-022-00872-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00872-z

Keywords

Navigation