Skip to main content
Log in

Hot Deformation Behavior and Processing Map of a Fe-11Mn-10Al-0.9C Duplex Low-Density Steel Susceptible to κ-Carbides

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The hot deformation behavior of a Fe-11Mn-10Al-0.9C duplex low-density steel has been investigated, based on a series of isothermal compression tests at temperatures of 800-1100 °C and strain rates of 0.001-10 s−1. At relatively lower temperatures, with austenite decomposing, continuous dynamic recrystallization of ferrite and the formation of inter-granular κ-carbide were responsible for significant softening. At high deformation temperature where austenite was a dominant phase, dynamic recrystallization (DRX) is the restoration mechanism. Processing maps were developed at different plastic strains employing dynamic materials model and further verified through microstructural characterization. The optimal hot deformation condition at a large strain (0.7) was identified as deformation temperature of 950-1100 °C and strain rate of 0.01-1.0 s−1. In this domain, the original coarse grains could be replaced by the fine and uniform recrystallized grains, indicating that the high efficiency was dissipated by DRX. Meanwhile, two instable regions resulted from the formation of inter-granular κ-carbides and necklace structure should be avoided during hot processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.S. Sohn, H. Song, B. Suh, J.H. Kwak, B.J. Lee, N.J. Kim, and S. Lee, Novel Ultra-High-Strength (Ferrite + Austenite) Duplex Lightweight Steels Achieved by Fine Dislocation Substructures (Taylor Lattices) Grain Refinement, and Partial Recrystallization, Acta Mater., 2015, 96, p 301–310

    Article  Google Scholar 

  2. H. Song, J. Yoo, S.H. Kim, S.S. Sohn, M. Koo, N.J. Kim, and S. Lee, Novel Ultra-High-Strength Cu-Containing Medium-Mn Duplex Lightweight Steels, Acta Mater., 2017, 135, p 215–225

    Article  Google Scholar 

  3. N. Kisku, A. Sarkar, K.K. Ray, and S. Mandal, Development and Characterization of a Novel Ti-Modified High-Si Medium-Mn Steel Possessing Ultra-High Strength and Reasonable Ductility After Hot Rolling, J. Mater. Eng. Perform., 2018, 27, p 4077–4089

    Article  Google Scholar 

  4. L. Zhang, X. Huang, Y. Wang, Y. Guo, G. Dai, and D. Li, Achieving Excellent Strength-Ductility and Impact Toughness Combination by Cyclic Quenching in Medium Mn TRIP-Aided Steel, J. Mater. Eng. Perform., 2018, 27, p 5769–5777

    Article  Google Scholar 

  5. K. Choi, C. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.T. Park, and N.J. Kim, Effect of Aging on the Microstructure and Deformation Behavior of Austenite Base Lightweight Fe-28Mn-9Al-0.8C Steel, Scripta Mater., 2010, 63, p 1028–1031

    Article  Google Scholar 

  6. G. Frommeyer and U. Brüx, Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels, Steel Res. Int., 2006, 77, p 627–633

    Article  Google Scholar 

  7. W.K. Choo, J.H. Kim, and J.C. Yoon, Microstructural Change in Austenitic Fe-30.0 wt%Mn-7.8 wt%Al-1.3 wt%C Initiated by Spinodal Decomposition and Its Influence on Mechanical Properties, Acta Mater., 1997, 45, p 4877–4885

    Article  Google Scholar 

  8. D. Liu, M. Cai, H. Ding, and D. Han, Control of Inter/Intra-Granular κ-Carbides and Its Influence on Overall Mechanical Properties of a Fe-11Mn-10Al-1.25C Low Density Steel, Mater. Sci. Eng., A, 2018, 715, p 25–32

    Article  Google Scholar 

  9. S.Y. Han, S.Y. Shin, S.G. Lee, N.J. Kim, J.H. Kwak, and K.G. Chin, Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-weight Steel Plates, Metall. Mater. Trans. A, 2012, 42, p 138–146

    Article  Google Scholar 

  10. S.S. Sohn, B.-J. Lee, S. Lee, and J.-H. Kwak, Effects of Aluminum Content on Cracking Phenomenon Occurring during Cold Rolling of Three Ferrite-Based Lightweight Steel, Acta Mater., 2013, 61, p 5626–5635

    Article  Google Scholar 

  11. J.D. Yoo and K. Park, Microband-Induced Plasticity in a High Mn-Al-C Light Steel, Mater. Sci. Eng., A, 2008, 496, p 417–424

    Article  Google Scholar 

  12. O.A. Zambrano, J. Valdés, Y. Aguilar, J.J. Coronado, S.A. Rodríguez, and R.E. Logé, Hot Deformation of a Fe-Mn-Al-C Steel Susceptible of κ-Carbide Precipitation, Mater. Sci. Eng., A, 2017, 689, p 269–285

    Article  Google Scholar 

  13. B.H. Sun, H. Aydin, F. Fzaeli, and S. Yue, Microstructure Evolution of a Medium Manganese Steel during Thermomechanical Processing, Metall. Mater. Trans. A, 2016, 47, p 1782–1791

    Article  Google Scholar 

  14. Y.P. Li, R.B. Song, E.D. Wen, and F.Q. Yang, Hot Deformation and Dynamic Recrystallization Behavior of Austenite-Based Low-density Fe-Mn-Al-C Steel, Acta Metall. Sin. (Engl. Lett.), 2016, 29, p 441–449

    Article  Google Scholar 

  15. T. Siegmund, E. Werner, and F.D. Fischer, On the Thermomechanical Deformation Behavior of Duplex-Type Materials, J. Mech. Phys. Solids, 1995, 43, p 495–532

    Article  Google Scholar 

  16. A. Mohamadizadeh, A. Zarei-Hanzaki, H.R. Abedi, S. Mehtonen, and D. Porter, Hot Deformation Characterization of Duplex Low-density Steel through 3D Processing Map Development, Mater. Charact., 2015, 107, p 293–301

    Article  Google Scholar 

  17. P. Cizek, The Microstructure Evolution and Softening Processes during High Temperature Deformation of a 21Cr-10Ni-3Mo Duplex Stainless Steel, Acta Mater., 2016, 106, p 129–143

    Article  Google Scholar 

  18. M.C. Li, H. Chang, P.W. Kao, and D. Gan, The Effect of Mn and Al Contents on the Solvus of κ Phase in Austenitic Fe-Mn-Al-C Alloys, Mater. Chem. Phys., 1999, 59, p 96–99

    Article  Google Scholar 

  19. R. Raj, Development of a Processing Map for Use in Warm-forming and Hot-forming Processes, Metall. Trans. A, 1981, 12, p 1089–1097

    Article  Google Scholar 

  20. K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Design, 2017, 115, p 262–275

    Article  Google Scholar 

  21. M.K. Mishra, I. Balasundar, A.G. Rao, B.P. Kashyap, and N. Prabhu, On the High Temperature Deformation Behaviour of 2507 Super Duplex Stainless Steel, J. Mater. Eng. Perform., 2017, 26, p 802–812

    Article  Google Scholar 

  22. N. Park, A. Shibata, D. Terada, and N. Tsuji, Flow Stress Analysis for Determining the Critical Condition of Dynamic Ferrite Transformation in 6Ni-0.1C Steel, Acta Mater., 2013, 61, p 163–173

    Article  Google Scholar 

  23. W. Zhang, S. Sun, D. Zhao, B. Wang, Z. Wang, and W. Fu, Hot Deformation Behavior of a Nb-containing 316LN Stainless Steel, Mater. Design, 2011, 32, p 4173–4179

    Article  Google Scholar 

  24. D. Ponge and G. Gottstein, Necklace Formation during Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46, p 69–80

    Article  Google Scholar 

  25. A. Momeni and K. Dehghani, Hot Working Behavior of 2205 Austenite-Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng., A, 2011, 528, p 1448–1454

    Article  Google Scholar 

  26. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science, New York, 2004

    Google Scholar 

  27. B. Eghbali, Effect of Strain Rate on the Microstructural Development through Continuous Dynamic Recrystallization in a Microalloyed Steel, Mater. Sci. Eng., A, 2010, 527, p 3402–3406

    Article  Google Scholar 

  28. Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, and W.G. Frazier, Effect of Prior β-Grain Size on the Hot Deformation Behavior of Ti-6Al-4 V: Coarse vs Coarser, J. Mater. Eng. Perform., 2000, 9, p 153–160

    Article  Google Scholar 

  29. S.A. Sajjadi, A. Chaichi, H.R. Ezatpour, A. Maghsoudlou, and M.A. Kalaie, Hot Deformation Processing Map and Microstructural Evaluation of the Ni-Based Superalloy IN-738LC, J. Mater. Eng. Perform., 2016, 25, p 1269–1275

    Article  Google Scholar 

  30. Y. Lou, H. Chen, C. Ke, and M. Long, Hot Tensile Deformation Characteristics and Processing Map of Extruded AZ80 Mg Alloys, J. Mater. Eng. Perform., 2014, 23, p 1904–1914

    Article  Google Scholar 

  31. Y. Xiao, H. Liu, D. Yi, J. Le, H.Z. Jiang, X. Zhao, Z. Chen, J. Wang, and Q. Gao, High-Temperature Deformation Behavior of Ti-6Al-2Sn-4Zr-2Mo Alloy with Lamellar Microstructure Under Plane-Strain Compression, J. Mater. Eng. Perform., 2018, 27, p 4941–4954

    Article  Google Scholar 

  32. E. Pu, W. Zheng, J. Xiang, Z. Song, and J. Li, Hot Deformation Characteristic and Processing Map of Superaustenitic Stainless Steel S32654, Mater. Sci. Eng., A, 2014, 598, p 174–182

    Article  Google Scholar 

  33. S. Tan, Z. Wang, S. Cheng, Z. Liu, J. Han, and W. Fu, Processing Maps and Hot Workability of Super304H Austenitic Heat-Resistant Stainless Steel, Mater. Sci. Eng., A, 2009, 517, p 312–315

    Article  Google Scholar 

  34. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258

    Article  Google Scholar 

  35. R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Tech., 2004, 152, p 136–143

    Article  Google Scholar 

  36. J. Seol, D. Raabe, P. Choi, H.S. Park, J.H. Kwak, and C.G. Park, Direct Evidence for the Formation of Ordered Carbides in a Ferrite-Based Low-Density Fe-Mn-Al-C Alloy Studied by Transmission Electron Microscopy and Atom Probe Tomography, Scripta Mater., 2013, 68, p 348–353

    Article  Google Scholar 

  37. H. Ahamed and V. Senthilkumar, Hot Deformation Behavior of Mechanically Alloyed Al6063/0.75Al2O3/0.75Y2O3 Nano-Composite—A Study Using Constitutive Modeling and Processing Map, Mater. Sci. Eng., A, 2012, 539, p 349–359

    Article  Google Scholar 

  38. M. Jafari and A. Najafizadeh, Correlation Between Zener-Hollomon Parameter and Necklace DRX during Hot Deformation of 316 Stainless Steel, Mater. Sci. Eng., A, 2009, 501, p 16–25

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Natural and Scientific Foundation of China (Grant No. 51474062 & U1760205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Ding or Minghui Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Ding, H., Cai, M. et al. Hot Deformation Behavior and Processing Map of a Fe-11Mn-10Al-0.9C Duplex Low-Density Steel Susceptible to κ-Carbides. J. of Materi Eng and Perform 28, 5116–5126 (2019). https://doi.org/10.1007/s11665-019-04200-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04200-1

Keywords

Navigation