Skip to main content
Log in

Strength Variation in Processing Multiport Extrusion Tubes of A1100 and A3102 Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The manufacturing process of multiport extrusion tubes generally includes homogenization, extrusion, roll leveling and heat treatment. In order to investigate the influence of the manufacturing procedures on strength variation of multiport extrusion tubes made of A1100 and A3102 alloys, the tube fabrication experiments and following materials characterization are carried out. The alloys’ stress–strain curves after every processing procedure are measured, and pressure-bearing capacity of the tubes is tested. The tubes’ strength and pressure-bearing capacity reach the peak values after straightening process and drop to the minimum after annealing. The contributions of solid solution hardening, grain boundary hardening and constituent particle strengthening to yield strength are evaluated. It is deduced that cluster hardening is the dominant strengthening mechanism for the as-homogenized and as-extruded samples; the contribution of clusters is second to work hardening after straightening process; slight cold work in conjunction with high-temperature annealing accelerates abnormal grain growth. The loss of strength increment from clusters can be interpreted by the remarkable reduction of high-angle grain boundaries after abnormal grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K.R. Mamaghani and M. Kazeminezhad, The Effect of Direct- and Cross-Rolling on Mechanical Properties and Microstructure of Severely Deformed Aluminum, J. Mater. Eng. Perform., 2014, 23, p 115–124

    Article  Google Scholar 

  2. C. Liu, X. Xue, X. Chen, C. Long Li, Z. Xia, Z. Zhong, D. Zhong, Effect of Microstructural Evolution on Sagging Behavior of Cold-Rolled Aluminum Foil during the Brazing Thermal Cycle, J. Mater. Eng. Perform., 2017, 26, p 5563–5570

    Article  Google Scholar 

  3. A. Laferrere, N. Parson, X. Zhou, and G. Thompson, Effect of Microstructure on the Corrosion Behavior of Extruded Heat Exchanger Aluminum Alloys, Surf. Interface Anal., 2013, 45, p 1597–1603

    Article  Google Scholar 

  4. F.F. Kraft, Method for Predicting and Optimizing the Strength of Extruded Multi-void Aluminum Heat Exchanger tube, in SAE Proceedings of the 2001 Vehicle Thermal Management Systems Conference (2001), pp. 363–370

  5. M.M. Guzowski, F.F. Kraft, H.R. McCarhery and J.C. Noveskey, Alloy and Process Effects on Brazed Automotive Condenser Tubing, in Proceedings of the Vehicle Thermal Management Systems (VTMS 4) Conference (1999), pp. 24–27

  6. X.H. Fan, D. Tang, W.L. Fang, D.Y. Li and Y.H. Peng, Effects of Pre-strain on Grain Growth of Extruded Aluminum Micro-channel Tubes during Heat Treatment (Shanghai Jiao Tong University, 2019) (to be published)

  7. A. Joshi, N. Kumar, K.K. Yogesha, R. Jayaganthan, and S.K. Nath, Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed through Multidirectional Cryoforging, J. Mater. Eng. Perform., 2016, 25, p 3031–3045

    Article  Google Scholar 

  8. N. Kumar and R.S. Mishra, Additivity of Strengthening Mechanisms in Ultrafine Grained Al-Mg-Sc Alloy, Mater. Sci. Eng., A, 2013, 580, p 175–183

    Article  Google Scholar 

  9. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155

    Article  Google Scholar 

  10. T. Sheppard, Temperature and Speed Effect in Hot Extrusion of Aluminum Alloys, Metall. Technol., 1981, 8, p 130–141

    Article  Google Scholar 

  11. H.W. Huang, B.L. Ou, and C.T. Tsai, Effect of Homogenization on Recrystallization and Precipitation Behavior of 3003 Aluminum Alloy, Mater. Trans., 2008, 49, p 250–259

    Article  Google Scholar 

  12. Q. Du and Y.J. Li, Effect Modeling of Cr and Zn on Microstructure Evolution during Homogenization Heat Treatment of A3xxx Alloys, Trans. Nonferrous Met. Soc. China, 2014, 24, p 2145–2149

    Article  Google Scholar 

  13. Q. Du, W.J. Poole, M.A. Wells, and N.C. Parson, Microstructure Evolution during Homogenization of Al-Mn-Fe-Si Alloys: Modeling and Experimental Results, Acta Mater., 2013, 61, p 4961–4973

    Article  Google Scholar 

  14. S.P. Ringer, I.J. Polmear, K. Hono, and S. Toshio, Cluster Hardening in an Aged Al-Cu-Mg Alloy, Scr. Mater., 1997, 36, p 517–521

    Article  Google Scholar 

  15. Y. Baba and A. Takashima, Influence of Composition on the Two-stage Aging of Al-Mg-Si Alloys, Trans. Jpn. Inst. Met., 1969, 10, p 196–204

    Article  Google Scholar 

  16. R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S.P. Ringer, Solute Clustering in Al-Cu-Mg Alloys during the Early Stages of Elevated Temperature Ageing, Acta Mater., 2010, 58, p 4923–4939

    Article  Google Scholar 

  17. R.K.W. Marceau, A. De Vaucorbeil, G. Sha, S.P. Ringer, and W.J. Poole, Analysis of Strengthening in AA6111 during the Early Stages of Aging: Atom Probe Tomography and Yield Stress Modelling, Acta Mater., 2013, 61, p 7285–7303

    Article  Google Scholar 

  18. B.J. Diak and S. Saimoto, The Determination of Solute Clusters in Dilute Aluminum Alloys Using Strain Rate Sensitivity, Mater. Sci. Eng., A, 1997, 234, p 1019–1022

    Article  Google Scholar 

  19. M.J. Starink and S.C. Wang, The Thermodynamics of and Strengthening due to Co-clusters: General Theory and Application to the Case of Al-Cu-Mg Alloys, Acta Mater., 2009, 57, p 2376–2389

    Article  Google Scholar 

  20. M.J. Starink, L.F. Cao, and P.A. Rometsch, A Model for the Thermodynamics of and Strengthening Due to Co-clusters in Al-Mg-Si-Based Alloys, Acta Mater., 2012, 60, p 4194–4207

    Article  Google Scholar 

  21. Q.L. Zhao, M. Slagsvold, and B. Holmedal, Comparison of the Influence of Si and Fe in 99.999% Purity Aluminum and in Commercial-Purity Aluminum, Scr. Mater., 2012, 67, p 217–220

    Article  Google Scholar 

  22. Q.L. Zhao, B. Holmedal, Y.J. Li, E. Sagvolden, and O.M. Løvvik, Multi-component Solid Solution and Cluster Hardening of Al-Mn-Si Alloys, Mater. Sci. Eng., A, 2015, 625, p 153–157

    Article  Google Scholar 

  23. Q.L. Zhao, Cluster Strengthening in Aluminum Alloys, Scr. Mater., 2014, 84, p 43–46

    Article  Google Scholar 

  24. A.L. Dons, The Alstruc Homogenization Model for Industrial Aluminum Alloys, Light Met., 2001, 1, p 133–149

    Article  Google Scholar 

  25. R.K. Gupta, N. Nayan, and B.R. Ghosh, Design of Homogenization Cycle for Various Grain Sizes of Aluminum Alloy AA2219 Using Diffusion Principles, Can. Metall. Q., 2006, 45, p 347–352

    Article  Google Scholar 

  26. D. Tang, X. Fan, W. Fang, D. Li, and Y. Peng, Microstructure and Mechanical Properties Development of Micro Channel Tubes in Extrusion. Rolling and Brazing, Mater. Charact., 2018, 142, p 449–457

    Article  Google Scholar 

  27. A.M.F. Muggerud, E.A. Mørtsell, Y.J. Li, and R. Holmestad, Dispersoid Strengthening in AA3xxx Alloys with Varying Mn and Si Content during Annealing at Low Temperatures, Mater. Sci. Eng., A, 2013, 567, p 21–28

    Article  Google Scholar 

  28. Y.J. Li and L. Arnberg, Quantitative Study on the Precipitation Behavior of Dispersoids in DC-Cast A3003 Alloy during Heating and Homogenization, Acta Mater., 2003, 51, p 3415–3428

    Article  Google Scholar 

  29. G.E. Totten and D.S. MacKenzie, Handbook of Aluminum: Alloy Production and Material Manufacturing, CRC Press, Boca Raton, 2003, p 716–717

    Book  Google Scholar 

  30. K. Huang, N. Wang, Y. Li, and K. Marthinsen, The Influence of Microchemistry on the Softening Behavior of Cold-Rolled Al-Mn-Fe-Si Alloys, Mater. Sci. Eng., A, 2014, 601, p 86–96

    Article  Google Scholar 

  31. X. Fan, D. Tang, W. Fang, D. Li, and Y. Peng, Microstructure Development and Texture Evolution of Aluminum Multi-port Extrusion Tube during the Porthole Die Extrusion, Mater. Charact., 2016, 118, p 468–480

    Article  Google Scholar 

  32. J.J. Salinas and A. Salinas, Grain Size and Texture Evolution during Annealing of Non-oriented Electrical Steel Deformed in Tension, J. Mater. Eng. Perform., 2015, 24, p 2117–2125

    Article  Google Scholar 

  33. M. Shakiba, N. Parson, and X.G. Chen, Effect of Homogenization Treatment and Silicon Content on the Microstructure and Hot Workability of Al-Fe-Si Alloys, Mater. Sci. Eng., A, 2014, 619, p 180–189

    Article  Google Scholar 

  34. M. Shakiba, N. Parson, and X.G. Chen, Hot Deformation Behavior and Rate-Controlling Mechanism in Dilute Al-Fe-Si Alloys with Minor Additions of Mn and Cu, Mater. Sci. Eng., A, 2015, 2015(636), p 572–581

    Article  Google Scholar 

  35. P. Babaghorbani, Annealing Behavior of Cold Deformed AA3003 Aluminum Alloys, Ph.D. Thesis, University of British Columbia (2015), pp. 55–67

  36. J. Gjønnes, V. Hansen, B.S. Berg, P. Runde, Y.F. Cheng, K. Gjønnes, D.L. Dorset, and C.J. Gilmore, Structure Model for the Phase AlmFe Derived from Three-Dimensional Electron Diffraction Intensity Data Collected by a Precession Technique. Comparison with Convergent-Beam Diffraction, Acta Crystallogr., 1998, 54, p 306–319

    Article  Google Scholar 

  37. A.M.F. Muggerud, Y.J. Li, and R. Holmestad, Composition and Orientation Relationships of Constituent Particles in 3xxx Aluminum Alloys, Philos. Mag., 2014, 94, p 556–568

    Article  Google Scholar 

  38. M. Slámová, V. Očenášek, and V.G. Vander, Polarized Light Microscopy: Utilization in the Investigation of the Recrystallization of Aluminum Alloys, Mater. Charact., 2004, 52, p 165–177

    Article  Google Scholar 

  39. H.J. McQueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, Boca Raton, 2016, p 514–517

    Book  Google Scholar 

  40. J. Yu and G. Zhao, Interfacial Structure and Bonding Mechanism of Weld Seams during Porthole Die Extrusion of Aluminum Alloy Profiles, Mater. Charact., 2018, 138, p 56–66

    Article  Google Scholar 

  41. E. Hornbogen and E.A. Starke, Theory Assisted Design of High Strength Low Alloy Aluminum (Overview), Acta Metall. Mater., 1991, 4, p 1–16

    Google Scholar 

  42. G.J. Mahon and G.J. Marshall, Microstructure-property Relationships in O-Temper Foil Alloys, Miner. Metall. Mater. Soc., 1996, 48, p 39–42

    Article  Google Scholar 

  43. L.A. Gypen and A. Deruyttere, Multi-component Solid Solution Hardening, J. Mater. Sci., 1977, 12, p 1028–1033

    Article  Google Scholar 

  44. J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. Lond. Ser. A, 1957, 241, p 376–396

    Article  Google Scholar 

  45. Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-parameter Models, Acta Metall., 1984, 32, p 57–70

    Article  Google Scholar 

  46. N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51, p 801–806

    Article  Google Scholar 

  47. W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, and C. Hutchinson, Precipitation Strengthening of Aluminum Alloys by Room-Temperature Cyclic Plasticity, Science, 2019, 363, p 972–975

    Article  Google Scholar 

  48. A. Zhu, B.M. Gable, G.J. Shiflet, and A.S. Jr, Edgar, Trace Element Effects on Precipitation in Al-Cu-Mg-(Ag, Si) Alloys: A Computational Analysis, Acta Mater., 2004, 52, p 3671–3679

    Article  Google Scholar 

  49. N. Ünlü, B.M. Gable, G.J. Shiflet, and E.A. Starke, Jr., The Effect of Cold Work on the Precipitation of Ω and θ′ in a Ternary Al-Cu-Mg Alloy, Metall. Mater. Trans. A, 2003, 34, p 2757–2769

    Article  Google Scholar 

  50. H. Jian, S.L. Thomas, and D.J. Srolovitz, Grain-Boundary Kinetics: A Unified Approach, Prog. Mater Sci., 2018, 98, p 386–476

    Article  Google Scholar 

  51. R.S. Barnes, G.B. Redding, and A.H. Cottrbll, The Observation of Vacancy Sources in Metals, Philos. Mag., 1958, 3, p 97–99

    Article  Google Scholar 

  52. K. Mizuno, S. Yamamoto, K. Morikawa, M. Kuga, H. Okamoto, and E. Hashimoto, Vacancy Generation Mechanism at High Temperatures in Ultrahigh-purity Aluminum Single Crystals with a Low Dislocation Density, J. Cryst. Growth, 2005, 275, p 1697–1702

    Article  Google Scholar 

  53. S. Bai, Z. Liu, P. Ying, J. Wang, and A. Wang, Quantitative Study of the Solute Clustering and Precipitation in a Pre-stretched Al-Cu-Mg-Ag Alloy, J. Alloys Compd., 2017, 725, p 1288–1296

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding from the National Natural Science Foundation of China (Project No. 51705315, 51575346). Additionally, supports to this study from Selected Foundation of Ministry of Education of China (Project No. 20120073130010) and Natural Science Foundation of Shanghai (Project No. 15ZR1424100) are kindly acknowledged. DL thank the support of Materials Genome Initiative Center, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianxia Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Li, D., Zou, T. et al. Strength Variation in Processing Multiport Extrusion Tubes of A1100 and A3102 Alloys. J. of Materi Eng and Perform 28, 3576–3589 (2019). https://doi.org/10.1007/s11665-019-04132-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04132-w

Keywords

Navigation