Skip to main content
Log in

Simultaneous Enhancement of Strength and Ductility in AM60 Tubes Using a Novel Approach of Modified Tube Cyclic Expansion Extrusion

  • Innovations in Forming Technologies for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The current study uses a modified tube cyclic expansion extrusion (M-TCEE) as a novel severe plastic deformation method to improve the microstructure and properties of AM60 magnesium alloy tubes. Employing a bulk rod-shaped punch in the M-TCEE process makes it feasible to apply greater pressing forces without worrying about the buckle of the punch, which is a problem encountered when using the traditional TCEE method that involves a hollow tubular punch. Consequently, this advancement allows for the manufacturing of tubes with increased length-to-diameter ratios. By undergoing the process, the initial large grains are refined and utilized to generate a bimodal grain structure that includes coarse cores encompassed by fine grains. The findings demonstrate that by performing the M-TCEE process, the yield strength increases by 78% compared to its initial value of 79 MPa, the ultimate tensile strength increases ~ 56% compared to its initial value of 147 MPa, and the ductility almost doubled (from ~ 2.7% to ~ 5.3%). Additionally, the microhardness rose from 56 HV to 82 HV. Also, the corrosion behavior of AM60 tubes is improved by the M-TCEE process, as indicated by the hydrogen evolution curves. Overall, the M-TCEE method has the potential to improve the microstructural, mechanical, and corrosion characteristics of AM60 tubular samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Zangiabadi and M. Kazeminezhad, Development of a novel severe plastic deformation method for tubular materials: tube channel pressing (TCP). Mater. Sci. Eng. A 528(15), 5066 (2011).

    CAS  Google Scholar 

  2. G. Faraji, H.S. Kim, and H.T. Kashi, Severe Plastic Deformation: Methods, Processing and Properties (Elsevier, Amsterdam, 2018).

    Google Scholar 

  3. V. Segal, Materials processing by simple shear. Mater. Sci. Eng. A 197(2), 157 (1995).

    MathSciNet  Google Scholar 

  4. A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53(6), 893 (2008).

    CAS  Google Scholar 

  5. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr. Mater. 39(9), 1221 (1998).

    CAS  Google Scholar 

  6. M. Ebrahimi, Q. Wang, and S. Attarilar, A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Prog. Mater. Sci. 131, 101016 (2022).

    Google Scholar 

  7. A. Nagasekhar, U. Chakkingal, and P. Venugopal, Candidature of equal channel angular pressing for processing of tubular commercial purity-titanium. J. Mater. Process. Technol. 173(1), 53 (2006).

    CAS  Google Scholar 

  8. L. Toth, M. Arzaghi, B. Fundenberger, B. Beausir, O. Bouaziz, and R. Arruffat-Massion, Severe plastic deformation of metals by high-pressure tube twisting. Scr. Mater. 60(3), 175 (2009).

    CAS  Google Scholar 

  9. G. Faraji, M.M. Mashhadi, and H.S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes. Mater. Lett. 65(19–20), 3009 (2011).

    CAS  Google Scholar 

  10. G. Faraji, A. Babaei, M.M. Mashhadi, and K. Abrinia, Parallel tubular channel angular pressing (PTCAP) as a new severe plastic deformation method for cylindrical tubes. Mater. Lett. 77, 82 (2012).

    CAS  Google Scholar 

  11. M. Mohebbi and A. Akbarzadeh, Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes. Mater. Sci. Eng. A 528(1), 180 (2010).

    Google Scholar 

  12. M.H. Farshidi, M. Kazeminezhad, and H. Miyamoto, Microstructrual evolution of aluminum 6061 alloy through tube channel pressing. Mater. Sci. Eng. A 615, 139 (2014).

    CAS  Google Scholar 

  13. J.T. Wang, Z. Li, J. Wang, and T.G. Langdon, Principles of severe plastic deformation using tube high-pressure shearing. Scr. Mater. 67(10), 810 (2012).

    CAS  Google Scholar 

  14. H. Torabzadeh, G. Faraji, and E. Zalnezhad, Cyclic flaring and sinking (CFS) as a new severe plastic deformation method for thin-walled cylindrical tubes. Trans. Indian Inst. Met. 69, 1217 (2016).

    Google Scholar 

  15. G. Faraji, E. Taherkhani, and M.R. Sabour, Cyclic severe plastic deformation processes. https://doi.org/10.1016/B978-0-323-96020-5.00047-9 (2023).

  16. M.M. Savarabadi, G. Faraji, and E. Zalnezhad, Hydrostatic tube cyclic expansion extrusion (HTCEE) as a new severe plastic deformation method for producing long nanostructured tubes. J. Alloys Compd. 785, 163 (2019).

    Google Scholar 

  17. M. Eftekhari, G. Faraji, and M. Bahrami, Processing of commercially pure copper tubes by hydrostatic tube cyclic extrusion–compression (HTCEC) as a new SPD method. Arch. Civ. Mech. Eng. 21, 1 (2021).

    Google Scholar 

  18. A. Babaei, M. Mashhadi, and H. Jafarzadeh, Tube cyclic expansion-extrusion (TCEE) as a novel severe plastic deformation method for cylindrical tubes. J. Mater. Sci. 49, 3158 (2014).

    ADS  CAS  Google Scholar 

  19. M.A. Majidabad, M. Eftekhari, and G. Faraji, Characterization of Mg-9Al-1Zn-0.2 Mn alloy tubes processed by a new modified tube cyclic expansion extrusion (M-TCEE) process. J. Mater. Res. Technol. 24, 7989 (2023).

    CAS  Google Scholar 

  20. D. Eliezer, E. Aghion, and F. Froes, Magnesium science, technology and applications. Adv. Perform. Mater. 5, 201 (1998).

    CAS  Google Scholar 

  21. Z. Tian, B. Song, and Y. Liu, Application and developing of AM magnesium alloy in automobile industry. J. Automob. Technol. Mater. 7, 21 (2004).

    Google Scholar 

  22. C. Bettles and M. Barnett, Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications (Elsevier, Amsterdam, 2012).

    Google Scholar 

  23. J.R. Davis, Metals Handbook, Desk. (ASM Desk Edition, 1998).

    Google Scholar 

  24. S. Agnew, Deformation Mechanisms of Magnesium Alloys. Advances in Wrought Magnesium Alloys (Elsevier, Amsterdam, 2012), pp. 63–104.

    Google Scholar 

  25. C.-J. Li, H.-F. Sun, X.-W. Li, J.-L. Zhang, W.-B. Fang, and Z.-Y. Tan, Microstructure, texture and mechanical properties of Mg-3.0 Zn-0.2 Ca alloys fabricated by extrusion at various temperatures. J. Alloys Compd. 652, 122 (2015).

    CAS  Google Scholar 

  26. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012).

    Google Scholar 

  27. N. Xu, R. Feng, Q. Song, and Y. Bao, Microstructure and mechanical properties’ modification of low-temperature friction stir welded non-combustive Mg-9A1-1Zn-1Ca alloy joint. J. Mater. Res. Technol. 8(5), 4448 (2019).

    CAS  Google Scholar 

  28. A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 49(7), 1199 (2001).

    ADS  CAS  Google Scholar 

  29. R.B. Figueiredo and T.G. Langdon, Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP. J. Mater. Sci. 45, 4827 (2010).

    ADS  CAS  Google Scholar 

  30. W. Tang, R. Chen, J. Zhou, and E. Han, Effects of ECAE temperature and billet orientation on the microstructure, texture evolution and mechanical properties of a Mg-Zn-Y-Zr alloy. Mater. Sci. Eng. A 499(1–2), 404 (2009).

    Google Scholar 

  31. Y. Estrin, S. Yi, H.-G. Brokmeier, Z. Zúberová, S. Yoon, H. Kim, and R.J. Hellmig, Microstructure, texture and mechanical properties of the magnesium alloy AZ31 processed by ECAP. Int. J. Mater. Res. 99(1), 50 (2008).

    CAS  Google Scholar 

  32. A. Fata, M. Eftekhari, G. Faraji, and M. Mosavi Mashhadi, Enhanced hot tensile ductility of Mg-3Al-1Zn alloy thin-walled tubes processed via a combined severe plastic deformation. J. Mater. Eng. Perform. 27, 2330 (2018).

    CAS  Google Scholar 

  33. R. Lapovok, Y. Estrin, M.V. Popov, and T.G. Langdon, Enhanced superplasticity in a magnesium alloy processed by equal-channel angular pressing with a back-pressure. Adv. Eng. Mater. 10(5), 429 (2008).

    CAS  Google Scholar 

  34. M. Aali, G. Faraji, M.R. Sadrkhah, A. Fata, and M.J. Hadad, Evaluation of microstructure and tensile behavior of fine-grained AZ61 alloy tube processed by severe plastic deformation. J. Adv. Mater. Process. 7(3), 53 (2019).

    Google Scholar 

  35. F. Kang, J.Q. Liu, J.T. Wang, and X. Zhao, The effect of hydrostatic pressure on the activation of non-basal slip in a magnesium alloy. Scr. Mater. 61(8), 844 (2009).

    CAS  Google Scholar 

  36. S. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi, Dynamic recrystallization in AZ31 magnesium alloy. Mater. Sci. Eng. A 456(1–2), 52 (2007).

    Google Scholar 

  37. J. Del Valle and O.A. Ruano, Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 magnesium alloy. Mater. Sci. Eng. A 487(1–2), 473 (2008).

    Google Scholar 

  38. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, and H. Kim, The influences of extrusion and equal channel angular pressing (ECAP) processes on the fatigue behavior of AM60 magnesium alloy. Mater. Sci. Eng. A 565, 308 (2013).

    CAS  Google Scholar 

  39. S. Amani, G. Faraji, and K. Abrinia, Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE). J. Manuf. Process. 28, 197 (2017).

    Google Scholar 

  40. F. Samadpour, G. Faraji, and M. Savarabadi, Processing of long ultrafine-grained AM60 magnesium alloy tube by hydrostatic tube cyclic expansion extrusion (HTCEE) under high fluid pressure. Int. J. Adv. Manuf. Technol. 111, 3535 (2020).

    Google Scholar 

  41. S. Ahmadi, V. Alimirzaloo, G. Faraji, and A. Doniavi, Properties inhomogeneity of AM60 magnesium alloy processed by cyclic extrusion compression angular pressing followed by extrusion. Trans. Nonferrous Met. Soc. China 31(3), 655 (2021).

    CAS  Google Scholar 

  42. C. Do Lee, Dependence of tensile properties of AM60 magnesium alloy on microporosity and grain size. Mater. Sci. Eng. A 454, 575 (2007).

    Google Scholar 

  43. C. Pande and K. Cooper, Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog. Mater. Sci. 54(6), 689 (2009).

    CAS  Google Scholar 

  44. M. Avvari and M. Able, Microstructure evolution in AZ61 alloy processed by equal channel angular pressing. Adv. Mech. Eng. 8(6), 1687814016651820 (2016).

    Google Scholar 

  45. S Amani, and G Faraji, Processing and properties of biodegradable magnesium microtubes for using as vascular stents: a brief review. Met. Mater. Int. 25, 1341 (2014).

    Google Scholar 

  46. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, and H. Kim, Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing. Mater. Des. 43, 31 (2013).

    CAS  Google Scholar 

  47. Z. Lee, V. Radmilovic, B. Ahn, E.J. Lavernia, and S.R. Nutt, Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy. Metall. Mater. Trans. A 41, 795 (2010).

    Google Scholar 

  48. R. Sánchez-Martín, M.T. Pérez-Prado, J. Segurado, J. Bohlen, I. Gutiérrez-Urrutia, J. Llorca, and J.M. Molina-Aldareguia, Measuring the critical resolved shear stresses in Mg alloys by instrumented nanoindentation. Acta Mater. 71, 283 (2014).

    ADS  Google Scholar 

  49. Y. Wang and J. Huang, The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy. Acta Mater. 55(3), 897 (2007).

    ADS  CAS  Google Scholar 

  50. K. Máthis, F. Chmelík, M. Janeček, B. Hadzima, Z. Trojanová, and P. Lukáč, Investigating deformation processes in AM60 magnesium alloy using the acoustic emission technique. Acta Mater. 54(20), 5361 (2006).

    ADS  Google Scholar 

  51. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51(7), 2055 (2003).

    ADS  CAS  Google Scholar 

  52. T. Obara, H. Yoshinga, and S. Morozumi, {1122} <1123> Slip system in magnesium. Acta Metall. 21(7), 845 (1973).

    CAS  Google Scholar 

  53. N. Stanford and M.R. Barnett, Solute strengthening of prismatic slip, basal slip and 101 2 twinning in Mg and Mg-Zn binary alloys. Int. J. Plast. 47, 165 (2013).

    CAS  Google Scholar 

  54. A. Yamashita, Z. Horita, and T.G. Langdon, Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng. A 300(1–2), 142 (2001).

    Google Scholar 

  55. M. Thirumurugan and S. Kumaran, Extrusion and precipitation hardening behavior of AZ91 magnesium alloy. Trans. Nonferrous Met. Soc. China 23(6), 1595 (2013).

    CAS  Google Scholar 

  56. M. Zohrevand, A.R. Rezaei, M.R. Sabour, E. Taherkhani, and G. Faraji, Recent progress on SPD processes empowered by hydrostatic pressure. Mater. Trans. 64(8), 1663 (2023).

    CAS  Google Scholar 

  57. G. Raab, E. Soshnikova, and R. Valiev, Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti. Mater. Sci. Eng. A 387, 674 (2004).

    Google Scholar 

  58. A. Siahsarani and G. Faraji, Processing and characterization of AZ91 magnesium alloys via a novel severe plastic deformation method: hydrostatic cyclic extrusion compression (HCEC). Trans. Nonferrous Met. Soc. China 31(5), 1303 (2021).

    CAS  Google Scholar 

  59. Y. Chino, M. Kobata, H. Iwasaki, and M. Mabuchi, An investigation of compressive deformation behaviour for AZ91 Mg alloy containing a small volume of liquid. Acta Mater. 51(11), 3309 (2003).

    ADS  CAS  Google Scholar 

  60. A.S. Al-Zubaydi, A.P. Zhilyaev, S.C. Wang, P. Kucita, and P.A. Reed, Evolution of microstructure in AZ91 alloy processed by high-pressure torsion. J. Mater. Sci. 51, 3380 (2016).

    ADS  CAS  Google Scholar 

  61. F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method. Int. J. Miner. Metall. Mater. 27, 669 (2020).

    CAS  Google Scholar 

  62. G.M. Abady, N.H. Hilal, M. El-Rabiee, and W.A. Badawy, Effect of Al content on the corrosion behavior of Mg-Al alloys in aqueous solutions of different pH. Electrochim. Acta 55(22), 6651 (2010).

    CAS  Google Scholar 

  63. J.H. Nordlien, K. Nisancioglu, S. Ono, and N. Masuko, Morphology and structure of water-formed oxides on ternary MgAl alloys. J. Electrochem. Soc. 144(2), 461 (1997).

    CAS  Google Scholar 

  64. Y.-L. Cheng, T.-W. Qin, H.-M. Wang, and Z. Zhang, Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. Trans. Nonferrous Met. Soc. China 19(3), 517 (2009).

    CAS  Google Scholar 

  65. Z. Shi, G. Song, and A. Atrens, Corrosion resistance of anodised single-phase Mg alloys. Surf. Coat. Technol. 201(1–2), 492 (2006).

    CAS  Google Scholar 

  66. R. Singh Raman, The role of microstructure in localized corrosion of magnesium alloys. Metall. Mater. Trans. A 35, 2525 (2004).

    Google Scholar 

  67. T. Laser, M. Nürnberg, A. Janz, C. Hartig, D. Letzig, R. Schmid-Fetzer, and R. Bormann, The influence of manganese on the microstructure and mechanical properties of AZ31 gravity die cast alloys. Acta Mater. 54(11), 3033 (2006).

    ADS  CAS  Google Scholar 

  68. G. Makar and J. Kruger, Corrosion of magnesium. Int. Mater. Rev. 38(3), 138 (1993).

    CAS  Google Scholar 

  69. M. Jönsson, D. Thierry, and N. LeBozec, The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe. Corros. Sci. 48(5), 1193 (2006).

    Google Scholar 

  70. O. Lunder, K. Nisancioglu, and R.S. Hansen, Corrosion of die cast magnesium-aluminum alloys, SAE Technical Paper (1993).

  71. K. Nis, Electrochemical behavior of aluminum-base intermetallics containing iron. J. Electrochem. Soc. 137(1), 69 (1990).

    Google Scholar 

  72. A. Siahsarani, F. Samadpour, M.H. Mortazavi, and G. Faraji, Microstructural, mechanical and corrosion properties of AZ91 magnesium alloy processed by a severe plastic deformation method of hydrostatic cyclic expansion extrusion. Met. Mater. Int. 27, 2933 (2021).

    CAS  Google Scholar 

  73. Q. Wu, S. Zhu, L. Wang, Q. Liu, G. Yue, J. Wang, and S. Guan, The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application. J. Mech. Behav. Biomed. Mater. 8, 1 (2012).

    CAS  PubMed  Google Scholar 

  74. M. Janeček, B. Hadzima, R.J. Hellmig, and Y. Estrin, The influence of microstructure on the corrosion properties of Cu polycrystals prepared by ECAP. Kov Materiäly 43(4), 258 (2005).

    Google Scholar 

  75. A. Di Schino and J.M. Kenny, Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels. J. Mater. Sci. Lett. 21(20), 1631 (2002).

    Google Scholar 

  76. D. Song, A. Ma, J. Jiang, P. Lin, D. Yang, and J. Fan, Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. Corros. Sci. 53(1), 362 (2011).

    CAS  Google Scholar 

  77. G.B. Hamu, D. Eliezer, and L. Wagner, The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy. J. Alloys Compd. 468(1–2), 222 (2009).

    Google Scholar 

  78. G. Han, J.-Y. Lee, Y.-C. Kim, J.H. Park, D.-I. Kim, H.-S. Han, S.-J. Yang, and H.-K. Seok, Preferred crystallographic pitting corrosion of pure magnesium in Hanks’ solution. Corros. Sci. 63, 316 (2012).

    CAS  Google Scholar 

  79. N. Birbilis, K. Ralston, S. Virtanen, H. Fraser, and C. Davies, Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng. Sci. Technol. 45(3), 224 (2010).

    CAS  Google Scholar 

  80. A. Bahmani, M. Lotfpour, M. Taghizadeh, and W.-J. Kim, Corrosion behavior of severely plastically deformed Mg and Mg alloys. J. Magnes. Alloys 10(10), 2607 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Faraji.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aali Majidabad, M., Rezaei, A.R. & Faraji, G. Simultaneous Enhancement of Strength and Ductility in AM60 Tubes Using a Novel Approach of Modified Tube Cyclic Expansion Extrusion. JOM 76, 1870–1882 (2024). https://doi.org/10.1007/s11837-024-06387-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06387-8

Navigation