Skip to main content
Log in

On Formation of Abnormally Large Grains in Annealing Prestrained Aluminum Alloy Multiport Extrusion Tubes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Abnormally large grains (ALGs) appear after annealing of prestrained multiport extrusion (MPE) tubes, which will significantly degrade the mechanical properties of the tubes. In the present work, the underpinning mechanisms of ALGs’ formation are probed through experiments. MPE tubes made of A3102 alloy are prestrained by roll leveling with different thickness reduction ratios and are then subjected to annealing at 600 °C for different times. Microstructural evolutions during annealing are characterized through electron backscatter diffraction (EBSD), in terms of crystallographic orientation, grain size distribution, grain boundary characters, and residual plastic strain. Uniaxial tension tests are carried out on the annealed tubes to study the effect of annealing on tubes’ strength. The thickness reduction prior to annealing produces heterogeneous deformation in tubes. The hard zones formed near grain boundaries and triple junction (TJs) are responsible for recrystallized nucleation in annealing. The duration of the identified incubation period for grain growth is inversely proportional to the thickness reduction ratio. The strain-free nuclei formed in the incubation period can grow fast into ALGs by means of strain-induced boundary migration. Further grain growth is inhibited by grains’ impingement after the strained grains are exhausted. Grains consumed by the growing ALGs tend to establish special boundary relationships with the ALGs and can turn into island grains. The significant reduction of tubes’ strength after annealing is attributed to the diminishment of grain boundaries caused by the formation of ALGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J. Zhao, Y.H. Diao, Y.H. Zhao, and Y.N. Zhang: Appl. Therm. Eng., 2014, vol. 65 (1), pp. 209–18.

    Google Scholar 

  2. M.M. Guzowski, F.F. Kraft, H.R. McCarhery, and J.C. Noveskey: Proc. Conf. 4th on Vehicle Thermal Management Systems, Wiley-Blackwell, Hoboken, NJ, 1999, pp. 24–27.

  3. K. Li, T.X. Zou, D.Y. Li, D. Shu, D. Tang, and Y.H. Peng: J. Mater. Eng. Perform., 2019, https://doi.org/10.1007/s11665-019-04132-w.

    Article  Google Scholar 

  4. D. Tang, X. Fan, W. Fang, D. Li, Y. Peng, and H. Wang: Mater. Charact., 2018, vol. 142, pp. 449–57.

    Article  CAS  Google Scholar 

  5. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Amsterdam, 2017, pp. 145–304.

    Book  Google Scholar 

  6. P.A. Beck and P.R. Sperry: J. Appl. Phys., 1950, vol. 21 (2), pp. 150–52.

    Article  CAS  Google Scholar 

  7. J.B. Koo and D.Y. Yoon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 469–75.

    Article  CAS  Google Scholar 

  8. V.M. Miller, A.E. Johnson, C.J. Torbet, and T.M. Pollock: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1566–74.

    Article  Google Scholar 

  9. G. He, L. Tan, F. Liu, L. Huang, Z. Huang, and L. Jiang: J. Alloys Compd., 2017, vol. 718, pp. 405–13.

    Article  CAS  Google Scholar 

  10. V.S. Tong and T.B. Britton: Acta Mater., 2017, vol. 129, pp. 510–20.

    Article  CAS  Google Scholar 

  11. A.D. Rollett, D.J. Srolovitz, and M.P. Anderson: Acta Metall., 1989, vol. 37 (4), pp. 1227–40.

    Article  CAS  Google Scholar 

  12. S.G. Kim and B.P. Yong: Acta Mater., 2008, vol. 56 (15), pp. 3739–53.

    Article  CAS  Google Scholar 

  13. E.J. Payton, G. Wang, M.J. Mills, and Y. Wang: Acta Mater., 2013, vol. 61 (4), pp. 1316–26.

    Article  CAS  Google Scholar 

  14. M. Shirdel, H. Mirzadeh, and M.P. Habibi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5185–93.

    Article  Google Scholar 

  15. C.G. Dunn and J.L. Walter: Recrystallization, Grain Growth and Texture, ASM, Metals Park, OH, 1965, p. 461.

    Google Scholar 

  16. F. Fang, Y.X. Zhang, X. Lu, Y. Wang, M.F. Lan, G. Yuan, R.D.K. Misra, and G.D. Wang: Scripta Mater., 2018, vol. 147, pp. 33–36.

    Article  CAS  Google Scholar 

  17. T. Omori, T. Kusama, S. Kawata, L. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, and R. Kainuma: Science, 2013, vol. 341 (6153), pp. 1500–02.

    Article  CAS  Google Scholar 

  18. H.C. Kim, C.G. Kang, M.Y. Huh, and E. Olaf: Scripta Mater., 2007, vol. 57 (4), pp. 325–27.

    Article  CAS  Google Scholar 

  19. T.W. Na, H.K. Park, C.S. Park, J.T. Park, and N.M. Hwang: Acta Mater., 2016, vol. 115, pp. 224–29.

    Article  CAS  Google Scholar 

  20. A.J. Carpenter: Master’s Thesis, The University of Texas at Austin, Austin, TX, 2011, pp. 33–41.

  21. I. Charit and R.S. Mishra: Scripta Mater., 2008, vol. 58 (5), pp. 367–71.

    Article  CAS  Google Scholar 

  22. S. Jana, R.S. Mishra, J.A. Baumann, and G. Grant: Mater. Sci. Eng. A, 2010, vol. 528, pp. 189–99.

    Article  Google Scholar 

  23. X.H. Fan, D. Tang, W.L. Fang, D.Y. Li, and Y.H. Peng: Mater. Charact., 2016, vol. 118, pp. 468–80.

    Article  CAS  Google Scholar 

  24. X.H. Fan: Doctoral Thesis, Shanghai Jiao Tong University, Shanghai, 2017, pp. 36–45.

  25. J.J. Salinas and A. Salinas: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2117–25.

    Article  CAS  Google Scholar 

  26. M. Sachtleber, Z. Zhao, and D. Raabe: Mater. Sci. Eng. A, 2002, vol. 336 (1), pp. 81–87.

    Article  Google Scholar 

  27. F. Bachmann, R. Hielscher, and H. Schaeben: Ultramicroscopy, 2011, vol. 111 (12), pp. 1720–33.

    Article  CAS  Google Scholar 

  28. J.B. Koo, D.Y. Yoon, and M.F. Henry: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1489–91.

    Article  CAS  Google Scholar 

  29. J. Harase, R. Shimizu, and N. Takahashi: Acta Metall. Mater., 1990, vol. 38 (10), pp. 1849–56.

    Article  CAS  Google Scholar 

  30. V. Randle, N. Hansen, and D. Juul Jensen: Philos. Mag. A, 1996, vol. 73 (2), pp. 265–82.

    Article  CAS  Google Scholar 

  31. W. Yin, W. Wang, X. Fang, C. Qin, and X. Xing: Mater. Charact., 2015, vol. 107, pp. 134–38.

    Article  CAS  Google Scholar 

  32. W.C. Liu, P.P. Zhai, and C.S. Man: Mater. Sci. Eng. A, 2012, vol. 531, pp. 178–81.

    Article  CAS  Google Scholar 

  33. K. Kashihara, Y. Takeuchi, and T. Shibayanagi: Mater. Trans., 2010, vol. 51 (4), pp. 607–13.

    Article  CAS  Google Scholar 

  34. K. Kashihara, H. Konishi, and T. Shibayanagi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8443–50.

    Article  CAS  Google Scholar 

  35. C. Antonione, F. Marino, G. Riontino, and M.C. Tabasso: J. Mater. Sci., 1977, vol. 12 (4), pp. 747–50.

    Article  CAS  Google Scholar 

  36. W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275–89.

    CAS  Google Scholar 

  37. Y. Takayama and J.A. Szpunar: Mater. Trans., 2005, vol. 45 (7), pp. 2316–25.

    Article  Google Scholar 

  38. J.J. Salinas and A. Salinas: J. Mater. Eng. Perform., 2015, vol. 24 (5), pp. 2117–25.

    Article  CAS  Google Scholar 

  39. S.P. Bellier and R.D. Doherty: Acta Metall., 1977, vol. 25 (5), pp. 521–38.

    Article  CAS  Google Scholar 

  40. G. Abrivard, E.P. Busso, S. Forest, and B. Appolaire: Philos. Mag., 2012, vol. 92, pp. 3618–42.

    Article  CAS  Google Scholar 

  41. N.A. Pedrazas, T.E. Buchheit, E.A. Holm, and M.T. Eric: Mater. Sci. Eng. A, 2014, vol. 610, pp. 76–84.

    Article  CAS  Google Scholar 

  42. V. Randle and A. Brown: Philos. Mag. A, 1988, vol. 58 (5), pp. 717–36.

    Article  CAS  Google Scholar 

  43. Z. Li, C. Hou, M. Huang, and C. Ouyang: Comput. Mater. Sci., 2009, vol. 46 (4), pp. 1124–34.

    Article  CAS  Google Scholar 

  44. H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, and R.H. Wagoner: Int. J. Plast., 2011, vol. 27 (9), pp. 1328–54.

    Article  CAS  Google Scholar 

  45. Q.L. Zhao, B. Holmedal, Y.J. Li, E. Sagvolden, and O.M. Løvvik: Mater. Sci. Eng. A, 2015, vol. 625, pp. 153–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding from the National Natural Science Foundation of China (Project Nos. 51705315, 51575346, and U1832183). One of the authors (DL) appreciates the support of the Materials Genome Initiative Center, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 4, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Zou, T., Li, D. et al. On Formation of Abnormally Large Grains in Annealing Prestrained Aluminum Alloy Multiport Extrusion Tubes. Metall Mater Trans A 50, 5734–5749 (2019). https://doi.org/10.1007/s11661-019-05453-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05453-0

Navigation