Skip to main content

Advertisement

Log in

Synthesis and Characterization of Aluminum Matrix Composites Reinforced with (Ni,Cu)3Al Intermetallic Particles via Mechanical Milling Technique

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigates the dispersion of (Ni,Cu)3Al intermetallic particles in an aluminum matrix via low-energy mechanical milling as an alternative to conventional stir casting. The precursor powders consisted in (Ni,Cu)3Al and reactive-grade Al particles with an average size of 15 and 3 microns, respectively. The concentrations used were 3, 5, 8 and 10 wt.% of the intermetallic powders. After 4 h of milling, the obtained powders were compacted in a unidirectional press with a pressure of 930 MPa and the obtained green compacts were sintered at 500 °C in a controlled atmosphere oven for 2 h. Result showed that the bulk composites displayed an increase in the Vickers microhardness as well as an increase in compressive strength and stiffness as the percentage of dispersed particles increased. The Al-8 wt.%(Ni,Cu)3Al sample achieved the best performance and is related to the findings in SEM micrographs that showed that higher reinforcement concentration increased the formation of microporosities that reduce the decohesion of the bulk sample and impact heavily on the mechanical performance of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Mortensen and J. Llorca, Metal Matrix Composites, Annu. Rev. Mater. Res., 2010, 40, p 243–270

    Article  Google Scholar 

  2. H.Z. Ye and X.Y. Liu, Review of Recent Studies in Magnesium Matrix Composites, J. Mater. Sci., 2004, 39(20), p 6153–6171

    Article  Google Scholar 

  3. D.J. Lloyd, Particle Reinforced Aluminium and Magnesium Matrix Composites, Int. Mater. Rev., 1994, 39(1), p 1–23

    Article  Google Scholar 

  4. A. Sluzalec, Stochastic Characteristics of Powder Metallurgy Processing, Appl. Math. Model., 2015, 39(23–24), p 7303–7308

    Article  Google Scholar 

  5. R.H. Estrada-Ruiz, R. Flores-Campos, J.M. Herrera-Ramírez, R. Martinez-Sanchez, Mechanical Properties of Aluminum 7075-Silver Nanoparticles Powder Composite and its Relationship with the Powder Particle Size, Adv. Powder Technol., 2016, 27(4), p 1694–1699

    Article  Google Scholar 

  6. P. Cavaliere, F. Jahantigh, A. Shabani, and B. Sadeghi, Influence of SiO2 Nanoparticles on the Microstructure and Mechanical Properties of Al Matrix Nanocomposites Fabricated by Spark Plasma Sintering, Compos. B Eng., 2018, 146, p 60–68

    Article  Google Scholar 

  7. X. Chen, D. Fu, J. Teng, and H. Zhang, Hot Deformation Behavior and Mechanism of Hybrid Aluminum-Matrix Composites Reinforced with Micro-SiC and Nano-TiB2, J. Alloys Compd., 2018, 753, p 566–575

    Article  Google Scholar 

  8. S. Venkatesan and M.A. Xavior, Tensile Behavior of Aluminum Alloy (AA7050) Metal Matrix Composite Reinforced with Graphene Fabricated by Stir and Squeeze Cast Processes, Sci. Technol. Mater., 2018, 30(2), p 74–85

    Article  Google Scholar 

  9. L. Lityńska-Dobrzyńska, M. Mitka, A. Góral, K. Stan-Gńska, and J. Dutkiewicz, Microstructure and Mechanical Properties of Aluminium Matrix Composites Reinforced by Al62Cu25. 5Fe12. 5 Melt Spun Ribbon, Mater. Charact., 2016, 117, p 127–133

    Article  Google Scholar 

  10. H. Chen, W. Wang, H. Nie, J. Zhou, Y. Li, and P. Zhang, Microstructure and Mechanical Properties of B4C/6061Al Laminar Composites Fabricated by Power Metallurgy, Vacuum, 2017, 143, p 363–370

    Article  Google Scholar 

  11. Y. Xue, R. Shen, S. Ni, M. Song, and D. Xiao, Fabrication, Microstructure and Mechanical Properties of Al-Fe Intermetallic Particle Reinforced Al-Based Composites, J. Alloys Compd., 2015, 618, p 537–544

    Article  Google Scholar 

  12. J.L. Gonza, F. Garci, G. Caruana, M. Lieblich et al., Aluminum/Ni3Al Composites Processed by Powder Metallurgy, Mater. Sci. Eng. A, 1994, 183(1–2), p L5–L8

    Google Scholar 

  13. M.A. Muñoz-Morris and D.G. Morris, Intermetallics: Past, Present and Future, Rev. Metal., 2005, 41(1), p 498–501

    Article  Google Scholar 

  14. R. Casati and M. Vedani, Metal Matrix Composites Reinforced by Nano-particles—a Review, Metals, 2014, 4(1), p 65–83

    Article  Google Scholar 

  15. M. Bomford, J. Benjamin, Mechanically-Alloyed Aluminum-Aluminum Oxide, U.S. Patent No. 3,816,080, U.S. Patent and Trademark Office, Washington, DC, 1974

  16. S.A. Tsukerman, Powder Metallurgy, Elsevier, Amsterdam, 1965

    Google Scholar 

  17. J. Colin, S. Serna, B. Campillo, O. Flores, and J. Juárez-Islas, Microstructural and Lattice Parameter Study of As-Cast and Rapidly Solidified NiAl Intermetallic Alloys with Cu Additions, Intermetallics, 2008, 16(7), p 847–853

    Article  Google Scholar 

  18. J. Colín, S. Serna, B. Campillo, R.A. Rodríguez, and J. Juárez-Islas, Effect of Cu Additions Over the Lattice Parameter and Hardness of the NiAl Intermetallic Compound, J. Alloys Compd., 2010, 489(1), p 26–29

    Article  Google Scholar 

  19. J.J. Fuentes, J.A. Rodríguez, E.J. Herrera, E.S. de Ingenieros. Rotura de probetas sinterizadas de Al AM con adición de silicio, in Anales de Mecánica de la Fractura, vol. 18; 2001. p 137–144 (in spanish).

  20. J.A. Rodríguez, An Alternative Route to the Consolidation of Mechanically Alloyed Aluminum Powder, Mater. Trans. JIM, 1995, 36(2), p 312–316

    Article  Google Scholar 

  21. C.C. Koch, Materials Synthesis by Mechanical Alloying, Annu. Rev. Mater. Sci., 1989, 19(1), p 121–143

    Article  Google Scholar 

  22. S. Sankaranarayanan, S. Jayalakshmi, and M. Gupta, Effect of Individual and Combined Addition of Micro/Nano-sized Metallic Elements on the Microstructure and Mechanical Properties of Pure Mg, Mater. Des., 2012, 37, p 274–284

    Article  Google Scholar 

  23. A. Mazahery, H. Abdizadeh, and H.R. Baharvandi, Development of High-Performance A356/Nano-Al2O3 Composites, Mater. Sci. Eng. A, 2009, 518(1–2), p 61–64

    Article  Google Scholar 

  24. R.S. Rana, R. Purohit, V.K. Soni, and S. Das, Characterization of Mechanical Properties and Microstructure of Aluminium Alloy-SiC Composites, Mater. Today Proc., 2015, 2(4–5), p 1149–1156

    Article  Google Scholar 

  25. K.R. Kumar, K. Kiran, and V.S. Sreebalaji, Microstructural Characteristics and Mechanical Behaviour of Aluminium Matrix Composites Reinforced with Titanium Carbide, J. Alloys Compd., 2017, 723, p 795–801

    Article  Google Scholar 

  26. P. Ravindran, K. Manisekar, S.V. Kumar, and P. Rathika, Investigation of Microstructure and Mechanical Properties of Aluminum Hybrid Nanocomposites with the Additions of Solid Lubricant, Mater. Des., 2013, 51, p 448–456

    Article  Google Scholar 

  27. R.H. Estrada-Ruiz, R. Flores-Campos, J.M. Herrera-Ramírez, and R. Martinez-Sanchez, Mechanical Properties of Aluminum 7075-Silver Nanoparticles Powder Composite and its Relation- Ship with the Powder Particle Size, Adv. Powder Technol., 2016, 27(4), p 1694–1699

    Article  Google Scholar 

  28. P. Hernández, H. Dorantes, F. Hernández, R. Esquivel, D. Rivas, and V. López, Synthesis and Microstructural Characterization of Al-Ni3Al Composites Fabricated by Press-Sintering and Shock- Compaction, Adv. Powder Technol., 2014, 25(1), p 255–260

    Article  Google Scholar 

  29. P.M. Rao, K.S. Murthy, S.V. Suryanarayana, and S.N. Naidu, Effect of Ternary Additions on the Room Temperature Lattice Parameter of Ni3Al, Phys. Stat. Solidi (a), 1992, 133(2), p 231–235

    Article  Google Scholar 

  30. B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Boston, 1978

    Google Scholar 

  31. G.B. Schaffer and B.J. Hall, The Influence of the Atmosphere on the Sintering of Aluminum, Metal. Mater. Trans. A, 2002, 33(10), p 3279–3284

    Article  Google Scholar 

  32. G.B. Schaffer, B.J. Hall, S.J. Bonner, S.H. Huo, and T.B. Sercombe, The Effect of the Atmosphere and the Role of Pore Filling on the Sintering of Aluminium, Acta Mater., 2006, 54(1), p 131–138

    Google Scholar 

Download references

Acknowledgments

This work was financed by CONACyT [Grant Number 384950]; the authors would like to thank sincerely René Guardian Tapia and Ivan Puente Lee for the support provided in SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Villanueva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanueva, H., Campillo, B.F., Molina, A. et al. Synthesis and Characterization of Aluminum Matrix Composites Reinforced with (Ni,Cu)3Al Intermetallic Particles via Mechanical Milling Technique. J. of Materi Eng and Perform 28, 2221–2227 (2019). https://doi.org/10.1007/s11665-019-03952-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-03952-0

Keywords

Navigation