Skip to main content

Advertisement

Log in

Correlation Between Structure and Properties of Low-Carbon Cu-Ni-Mo-Ti-Nb Ultrahigh-Strength Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Low-carbon Cu-Ni-Mo-Ti-Nb steel having more than 1700 MPa tensile strength and good low-temperature impact toughness was successfully designed and processed for automobile, defence and structural applications. The steel was thermomechanical controlled processed at a different finish rolling temperatures (750-850 °C) and cooled at two different conditions: air cooling and water quenching. Evolutions of microstructure and precipitates were thoroughly characterised to understand the effect of different factors, such as steel composition, finish rolling temperature and cooling rate on the mechanical properties. The results indicate that the steel processed at 750 °C finish rolling temperature (FRT) followed by water quenching has exhibited superior tensile properties with a yield strength of 1034-1449 MPa, the tensile strength of 1598-1726 MPa and total elongation of 10-13%. Such an ultrahigh-strength level is primarily attributed to the combined effect of lower bainite dominated microstructure along with precipitation hardening. The satisfactory low-temperature toughness is promoted by low finish rolling temperature and higher amount of misorientation offered by the boundaries within the lower bainite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.V. Philip and T.J. McCaffy, Ultrahigh Strength Steel, Tenth edition, ASM International, USA, Metals Handbook, 1990, p 431–448

    Google Scholar 

  2. J.G. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon Partitioning into Austenite After Martensite Transformation, Acta Mater., 2003, 51(9), p 2611–2622

    Article  CAS  Google Scholar 

  3. H.K.D.H. Bhadeshia, Bainite in Steels, 2nd ed., IOM Communications, London, 2001

    Google Scholar 

  4. H.K.D.H. Bhadeshia, Large Chunks of Very Strong Steel, Mater. Sci. Technol., 2005, 21, p 1293–1302

    Article  CAS  Google Scholar 

  5. G. Caballero, C. Garcia-Mateo, and M.K. Miller, Modern Steels at Atomic and Nanometre Scales, Mater. Sci. Technol., 2015, 31, p 764–772

    Article  CAS  Google Scholar 

  6. T. Gladman, The Physical Metallurgy of Microalloyed Steels, London, UK, Institute of Materials, 1997, p 240

    Google Scholar 

  7. H.K.D.H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, 3rd ed., Elsevier Ltd., Amsterdam, 2006, p 221

    Google Scholar 

  8. R. Kuziak, R. Kawalla, and S. Waengler, Advanced High Strength Steels for Automotive Industry, Arch. Civ. Mech. Eng., 2008, 8, p 103–117

    Article  Google Scholar 

  9. M. Zhao, K. Yang, and Y. Shan, The Effects of Thermo-Mechanical Control Process on Microstructures and Mechanical Properties of a Commercial Pipeline Steel, Mater. Sci. Eng. A, 2002, 335, p 14–20

    Article  Google Scholar 

  10. S. Mandal, N.K. Tewary, S.K. Ghosh, D. Chakrabarti, and S. Chatterjee, Thermo-Mechanically Controlled Processed Ultrahigh Strength Steel: Microstructure, Texture and Mechanical Properties, Mater. Sci. Eng. A, 2016, 663, p 126–140

    Article  CAS  Google Scholar 

  11. T. Heller, B. Engl, G. Stich, and G. Thiemann, in Proc. Int. Conf. TMP’ 2000 London, London, (2000), p. 438

  12. F.B. Pickering, Physical Metallurgy and the Design of Steels, Applied Science Publishers, London, 1978, p 101–126

    Google Scholar 

  13. A. Takahashi and M. Iino, Microstructural Refinement by Cu Addition and Its Effect on Strengthening and Toughening of Sour Service Line Pipe Steels, ISIJ Int., 1996, 36, p 241–245

    Article  Google Scholar 

  14. A.J. Craven, K. He, L.A.J. Garvie, and T.N. Baker, Complex Heterogeneous Precipitation in Titanium-Niobium Microalloyed Al-Killed HSLA Steels-I (Ti, Nb) (C, N) Particles, Acta Mater., 2000, 48, p 3857–3868

    Article  CAS  Google Scholar 

  15. R.D.K. Misra, G.C. Weatherly, J.E. Hartmann, and A.J. Boucek, Role of structure and microstructure in the enhancement of strength and fracture resistance of ultra-high strength hot rolled steels, in 42nd MWSP Conference Proceedings ISS, vol. 38 (2000) pp. 391–405

  16. H. Kejian and T.N. Baker, The Effects of Small Titanium Additions on the Mechanical Properties and the Microstructures of Controlled Rolled Niobium-Bearing HSLA Plate Steels, Mater. Sci. Eng. A, 1993, 169(1–2), p 53–65

    Article  Google Scholar 

  17. S. Tirnanic, R. Curcic, D. Tirnanic, and D. Drobnjak, Properties of Thermo-Mechanically Rolled Nb/Ti Micro-alloyed Steel Sheets, Steel Res., 1989, 60, p 561–565

    Article  CAS  Google Scholar 

  18. Y. Funakawa, T. Shiozaki, K. Tomita, T. Saito, H. Nakata, K. Sato, M. Suwa, T. Yawamoto, Y. Murao, and E. Maeda, Patent on High Strength Hot Rolled Steel Sheet and Method of Manufacturing the Same, Pub. No.: US 2003/0063996 A1

  19. F.B. Pickering and B. Garbarz, Strengthening in Pearlite Formed from Thermo-Mechanically Processed Austenite in Vanadium Steels and Implications for Toughness, Mater. Sci. Technol., 1989, 5, p 227–237

    Article  CAS  Google Scholar 

  20. S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, and P.D. Hodgson, Three-Dimensional Atom Probe Microscopy Study of Interphase Precipitation and Nanoclusters in Thermomechanically Treated Titanium-Molybdenum Steels, Acta Mater., 2013, 61, p 2521–2530

    Article  CAS  Google Scholar 

  21. S. Zhang, P. Wang, D. Li, and Y. Li, Investigation of the Evolution of Retained Austenite in Fe-13%Cr-4%Ni Martensitic Stainless Steel During Intercritical Tempering, Mater. Des., 2015, 84, p 385–394

    Article  CAS  Google Scholar 

  22. Z.B. Jiao, J.H. Luan, M.K. Miller, and C.T. Liu, Precipitation Mechanism and Mechanical Properties of an Ultra-High Strength Steel Hardened by Nanoscale NiAl and Cu Particles, Acta Mater., 2015, 97, p 58–67

    Article  CAS  Google Scholar 

  23. Z.W. Zhang, C.T. Liu, Y.R. Wen, A. Hirata, S. Guo, G. Chen, M.W. Chen, and B.A. Chin, Influence of Aging and Thermomechanical Treatments on the Mechanical Properties of a Nanocluster-Strengthened Ferritic Steel, Metall. Mater. Trans. A, 2012, 43, p 351–359

    Article  Google Scholar 

  24. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano, Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Micro-alloyed Steel, Mater. Sci. Eng. A, 2005, 394, p 339–352

    Article  Google Scholar 

  25. H. Xie, L.-X. Du, J. Hu, and R.D.K. Misra, Microstructure and Mechanical Properties of a Novel 1000 MPa Grade TMCP Low Carbon Microalloyed Steel with Combination of High Strength and Excellent Toughness, Mater. Sci. Eng. A, 2014, 612, p 123–130

    Article  CAS  Google Scholar 

  26. X.-L. Li, C.-S. Lei, X.-T. Deng, Z.-D. Wang, Y.-G. Yu, G.-D. Wang, and R.D.K. Misra, Precipitation Strengthening in Titanium Micro-alloyed High-Strength Steel Plates with New Generation-Thermomechanical Controlled Processing (NG-TMCP), J. Alloys Compd., 2016, 689, p 542–553

    Article  CAS  Google Scholar 

  27. Z. Peng, L. Li, J. Gao, and X. Huo, Precipitation Strengthening of Titanium Micro-Alloyed High-Strength Steel Plates with Isothermal Treatment, Mater. Sci. Eng. A, 2016, 657, p 413–421

    Article  CAS  Google Scholar 

  28. A. Karmakara, S. Biswas, S. Mukherjee, D. Chakrabarti, and V. Kumar, Effect of Composition and Thermo-Mechanical Processing Schedule on the Microstructure, Precipitation and Strengthening of Nb-Microalloyed Steel, Mater. Sci. Eng. A, 2017, 690, p 158–169

    Article  Google Scholar 

  29. F. Fletcher, Meta-analysis of TNR Measurements: determining new empirical models based on composition and strain, in Austenite Processing Symposium (Internal Company Presentation) (2008), pp. 1–14

  30. C. Ma, L. Hou, J. Zhang, and L. Zhuang, Influence of Thickness Reduction per Pass on Strain, Microstructures and Mechanical Properties of 7050 Al Alloy Sheet Processed by Asymmetric Rolling, Mater. Sci. Eng. A, 2016, 650, p 454–468

    Article  CAS  Google Scholar 

  31. C. Jun, T. Shuai, L. Zhen-Yu, and W. Guo-Dong, Microstructural Characteristics with Various Cooling Paths and the Mechanism of Embrittlement and Toughening in Low-Carbon High Performance Bridge Steel, Mater. Sci. Eng. A, 2013, 559, p 241–249

    Article  Google Scholar 

  32. N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito, A New and Simple Process to Obtain Nano-Structured Bulk Low-Carbon Steel with Superior Mechanical Property, Scr. Mater., 2002, 46(4), p 305–310

    Article  CAS  Google Scholar 

  33. S. Queyreau, G. Monnet, and B. Devincre, Orowan Strengthening and Forest Hardening Superposition Examined by Dislocation Dynamics Simulations, Acta Mater., 2010, 58, p 5586–5595

    Article  CAS  Google Scholar 

  34. R.D.K. Misra, Z. Jia, R. O’Malley, and S.J. Jansto, Precipitation Behavior During Thin Slab Thermomechanical Processing and Isothermal Aging of Copper-Bearing Niobium-Microalloyed High Strength Structural Steels: The Effect on Mechanical Properties, Mater. Sci. Eng. A, 2011, 528, p 8772–8780

    Article  CAS  Google Scholar 

  35. M.P. Phaniraj, Y.-M. Shin, J. Lee, N.H. Goo, D.-I. Kim, J.-Y. Suh, W.-S. Jung, J.-H. Shim, and I.-S. Choi, Development of High Strength Hot Rolled Low Carbon Copper-Bearing Steel Containing Nanometer Sized Carbides, Mater. Sci. Eng. A, 2015, 633, p 1–8

    Article  CAS  Google Scholar 

  36. R.K. Ray and J.J. Jonas, Transformation Textures in Steels, Int. Mater. Rev., 1990, 35, p 1–36

    Article  Google Scholar 

  37. K. Zhu, O. Bouaziz, C. OberbilligHuang, and M. Huang, An Approach to Define the Effective Lath Size Controlling Yield Strength of Bainite, Mater. Sci. Eng. A, 2010, 527(24–25), p 6614–6619

    Article  Google Scholar 

  38. S. Chen, Y.G. An, and C. Lahaije, Toughness Improvement in Hot Rolled HSLA Steel Plates Through Asymmetric Rolling, Mater. Sci. Eng. A, 2015, 625, p 374–379

    Article  CAS  Google Scholar 

  39. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, and M. Thuvander, Microstructures and Hardness of As-Quenched Martensites (0.1–0.5%C), Acta Mater., 2011, 59, p 5845–5858

    Article  CAS  Google Scholar 

  40. Y. You, C. Shang, N. Wenjin, and S. Subramanian, Investigation on the Microstructure and Toughness of Coarse Grained Heat Affected Zone in X-100 Multi-Phase Pipeline Steel with High Nb Content, Mater. Sci. Eng. A, 2012, 558, p 692–701

    Article  CAS  Google Scholar 

  41. A.J. Kaijalainen, P. Suikkanen, L.P. Karjalainen, and J.J. Jonas, Effect of Austenite Pancaking on the Microstructure, Texture, and Bendability of an Ultrahigh-Strength Strip Steel, Metal. Mater. Trans. A., 2014, 45, p 1273–1283

    Article  CAS  Google Scholar 

  42. B.C. De Cooman, Structure-Properties Relationship in TRIP Steels Containing Carbide-Free Bainite, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 285–303

    Article  Google Scholar 

  43. P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, and Y.Y. Li, Effect of Delta Ferrite on Impact Properties of Low Carbon 13Cr-4Ni Martensitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 3210–3216

    Article  Google Scholar 

  44. A.A. Gornia and P.R. Mei, Effect of Controlled-Rolling Parameters on the Ageing Response of HSLA-80 Steel, J. Mater. Process. Technol., 2008, 197, p 374–378

    Article  Google Scholar 

  45. B. Mishra, K. Kumbhar, K.S. Kumar, K.S. Prasad, and M. Srinivas, Effect of Copper Addition on Microstructure and Mechanical Properties of Ultrahigh Strength NiSiCrCoMo Steel, Mater. Sci. Eng. A, 2016, 651, p 177–183

    Article  CAS  Google Scholar 

  46. M.D. Mulholland and D.N. Seidman, Multiple Dispersed Phases in a High-Strength Low-Carbon Steel: an Atom-Probe Tomographic and Synchrotron X-Ray Diffraction Study, Scr. Mater., 2009, 60, p 992–995

    Article  CAS  Google Scholar 

  47. S. Liu, H. Tana, H. Guo, C. Shang, and R.D.K. Misra, The Determining Role of Aluminum on Copper Precipitation and Mechanical Properties in Cu-Ni-Bearing Low Alloy Steel, Mater. Sci. Eng. A, 2016, 676, p 510–521

    Article  CAS  Google Scholar 

  48. C.N. Hulme-Smith and H.K.D.H. Bhadeshia, Mechanical Properties of Thermally-Stable, Nanocrystalline Bainitic Steels, Mater. Sci. Eng. A, 2017, 700, p 714–720

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, G., Ghosh, S.K., Chakrabarti, D. et al. Correlation Between Structure and Properties of Low-Carbon Cu-Ni-Mo-Ti-Nb Ultrahigh-Strength Steel. J. of Materi Eng and Perform 27, 6516–6528 (2018). https://doi.org/10.1007/s11665-018-3767-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3767-y

Keywords

Navigation