Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu-Nb addition

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Two types of ultralow carbon steel weld metals (with and without added Cu-Nb) were prepared using gas metal arc welding (GMAW) to investigate the correlation between the microstructure and mechanical properties of weld metals. The results of microstructure characterization showed that the weld metal without Cu-Nb was mainly composed of acicular ferrite (AF), lath bainite (LB), and granular bainite (GB). In contrast, adding Cu-Nb to the weld metal caused an evident transformation of martensite and grain coarsening. Both weld metals had a high tensile strength (more than 950 MPa) and more than 17% elongation; however, their values of toughness deviated greatly, with a difference of approximately 40 J at −50°C. Analysis of the morphologies of the fracture surfaces and secondary cracks further revealed the correlation between the microstructure and mechanical properties. The effects of adding Cu and Nb on the microstructure and mechanical properties of the weld metal are discussed; the indication is that adding Cu-Nb increases the hardenability and grain size of the weld metal and thus deteriorates the toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.K. Ahiale and Y.J. Oh, Microstructure and fatigue performance of butt-welded joints in advanced high-strength steels, Mater. Sci. Eng. A, 597(2014), p. 342.

    Article  CAS  Google Scholar 

  2. H. Xie, L.X. Du, J. Hu, G.S. Sun, H.Y. Wu, and R.D.K. Misra, Effect of thermo-mechanical cycling on the microstructure and toughness in the weld CGHAZ of a novel high strength low carbon steel, Mater. Sci. Eng. A, 639(2015), p. 482.

    Article  CAS  Google Scholar 

  3. P.S. Zhou, B. Wang, L. Wang, Y.W. Hu, and L. Zhou, Effect of welding heat input on grain boundary evolution and toughness properties in CGHAZ of X90 pipeline steel, Mater. Sci. Eng. A, 722(2018), p. 112.

    Article  CAS  Google Scholar 

  4. S.G. Lee, D.H. Lee, S.S. Sohn, W.G. Kim, K.K. Um, K.S. Kim, and S. Lee, Effects of Ni and Mn addition on critical crack tip opening displacement (CTOD) of weld-simulated heat-affected zones of three high-strength low-alloy (HSLA) steels, Mater. Sci. Eng. A, 697(2017), p. 55.

    Article  CAS  Google Scholar 

  5. L. Cui, X.Q. Yang, D.P. Wang, J. Cao, and W. Xu, Experimental study of friction taper plug welding for low alloy structure steel: Welding process, Mater. Des., 62(2014), p. 271.

    Article  CAS  Google Scholar 

  6. Ş. Talaş, The assessment of carbon equivalent formulas in predicting the properties of steel weld metals, Mater. Des., 31(2010), No. 5, p. 2649.

    Article  Google Scholar 

  7. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 558(2012), p. 592.

    Article  CAS  Google Scholar 

  8. A.A. Gorni and P.R. Mei, Austenite transformation and age hardening of HSLA-80 and ULCB steels, J. Mater. Process. Technol., 155–156(2004), p. 1513.

    Article  Google Scholar 

  9. Q.M. Jiang, X.Q. Zhang, and L.Q. Chen, Weldability of 1000 MPa grade ultra-low carbon bainitic steel, J. Iron Steel Res. Int., 23(2016), No. 7, p. 705.

    Article  Google Scholar 

  10. D.Y. Li, D.Q. Yang, G.J. Zhang, X.H. Chen, and X. Luo, Microstructure and mechanical properties of welding metal with high Cr-Ni austenite wire through Ar-He-N2 gas metal arc welding, J. Manuf. Processes, 35(2018), p. 190.

    Article  Google Scholar 

  11. R. Pamnani, T. Jayakumar, M. Vasudevan, and T. Sakthivel, Investigations on the impact toughness of HSLA steel arc welded joints, J. Manuf. Processes, 21(2016), p. 75.

    Article  Google Scholar 

  12. M. Mirzaei, R.A. Jeshvaghani, A. Yazdipour, and K. Zangeneh-Madar, Study of welding velocity and pulse frequency on microstructure and mechanical properties of pulsed gas metal arc welded high strength low alloy steel, Mater. Des., 51(2013), p. 709.

    Article  CAS  Google Scholar 

  13. Y. Peng, X.N. Peng, X.M. Zhang, Z.L. Tian, and T. Wang, Microstructure and mechanical properties of GMAW weld metal of 890 MPa class steel, J. Iron Steel Res. Int., 21(2014), No. 5, p. 539.

    Article  CAS  Google Scholar 

  14. J.C.F. Jorge, J.L.D. Monteiro, A.J.D.C. Gomes, I.D.S. Bott, L.F.G.D. Souza, M.C. Mendes, and L.S. Araújo, Influence of welding procedure and PWHT on HSLA steel weld metals, J. Mater. Res. Technol., 8(2019), No. 1, p. 561.

    Article  CAS  Google Scholar 

  15. X.L. Wang, X.M. Wang, C.J. Shang, and R.D.K. Misra, Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness, Mater. Sci. Eng. A, 649(2016), p. 282.

    Article  CAS  Google Scholar 

  16. E. Keehan, L. Karlsson, H.-O. Andrén, and H.K.D.H. Bhadeshia, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 3 — Increased strength resulting from carbon additions, Sci. Technol. Weld. Joining, 11(2006), No. 1, p. 19.

    Article  CAS  Google Scholar 

  17. M. Es-Souni, P.A. Beaven, and G.M. Evans, Microstructure of copper-bearing C-Mn weld metal: As-welded and stress-relieved states, Mater. Sci. Eng. A, 130(1990), No. 2, p. 173.

    Article  Google Scholar 

  18. A. Di Schino and P.E. Di Nunzio, Effect of Nb microalloying on the heat affected zone microstructure of girth welded joints, Mater. Lett., 186(2017), p. 86.

    Article  CAS  Google Scholar 

  19. A.J.M. Gomes, J.C.F. Jorge, L.F.G. de Souza, and I.D.S. Bott, Influence of chemical composition and post welding heat treatment on the microstructure and mechanical properties of high strength steel weld metals, Mater. Sci. Forum, 758(2013), p. 21.

    Article  Google Scholar 

  20. Z.L. Tian, C.Y. Ma, C.H. He, and Y. Peng, Development of an ultra-low carbon high strength welding wire, Mater. Sci. Forum, 426–432(2003), p. 1451.

    Article  Google Scholar 

  21. X.L. Wan, H.H. Wang, L. Cheng, and K.M. Wu, The formation mechanisms of interlocked microstructures in low-carbon high-strength steel weld metals, Mater. Charact., 67(2012), p. 41.

    Article  CAS  Google Scholar 

  22. S. Kumar and S.K. Nath, Effect of weld thermal cycles on microstructures and mechanical properties in simulated heat affected zone of a HY 85 Steel, Trans. Indian Inst. Met., 70(2017), No. 1, p. 239.

    Article  CAS  Google Scholar 

  23. Y.Y. Wang, R. Kannan, and L.J. Li, Characterization of as-welded microstructure of heat-affected zone in modified 9Cr-1Mo-V-Nb steel weldment, Mater. Charact., 118(2016), p. 225.

    Article  CAS  Google Scholar 

  24. R. Cao, Z.S. Chan, J.J. Yuan, C.Y. Han, Z.G. Xiao, X.B. Zhang, Y.J. Yan, and J.H. Chen, The effects of silicon and copper on microstructures, tensile and Charpy properties of weld metals by refined X120 wire, Mater. Sci. Eng. A, 718(2018), p. 350.

    Article  CAS  Google Scholar 

  25. J. Hu, L.X. Du, G.S. Sun, H. Xie, and R.D.K. Misra, The determining role of reversed austenite in enhancing toughness of a novel ultra-low carbon medium manganese high strength steel, Scripta Mater., 104(2015), p. 87.

    Article  CAS  Google Scholar 

  26. M.H. Avazkonandeh-Gharavol, M. Haddad-Sabzevar, and A. Haerian, Effect of copper content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal deposits, Mater. Des., 30(2009), No. 6, p. 1902.

    Article  CAS  Google Scholar 

  27. S.Y. Shin, S.Y. Han, B. Hwang, C.G. Lee, and S. Lee, Effects of Cu and B addition on microstructure and mechanical properties of high strength bainitic steels, Mater. Sci. Eng. A, 517(2009), No. 1–2, p. 212.

    Article  Google Scholar 

  28. S.T. Wei, and S.P. Lu, Effects of multiple normalizing processes on the microstructure and mechanical properties of low carbon steel weld metal with and without Nb, Mater. Des., 35(2012), p. 43.

    Article  CAS  Google Scholar 

  29. J. Moon, S. Kim, H. Jeong, J. Lee, and C. Lee, Influence of Nb addition on the particle coarsening and microstructure evolution in a Ti-containing steel weld HAZ, Mater. Sci. Eng. A, 454–455(2007), p. 648.

    Article  Google Scholar 

  30. H.T. Zhao and E.J. Palmiere, Effect of austenite grain size on acicular ferrite transformation in a HSLA steel, Mater. Charact., 145(2018), p. 479.

    Article  CAS  Google Scholar 

  31. E. Ma and T. Zhu, Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals, Mater. Today, 20(2017), No. 6, p. 323.

    Article  CAS  Google Scholar 

  32. M. Zhou, Y.H. Li, Q. Hu, X.F. Li, and J. Chen, Investigations on edge quality and its effect on tensile property and fracture patterns of QP980, J. Manuf. Processes, 37(2019), p. 509.

    Article  Google Scholar 

  33. M. Calcagnotto, D. Ponge, and D. Raabe, Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels, Mater. Sci. Eng. A, 527(2010), No. 29–30, p. 7832.

    Article  Google Scholar 

  34. H.F. Lan, L.X. Du, Q. Li, C.L. Qiu, J.P. Li, and R.D.K. Misra, Improvement of strength—toughness combination in aus-tempered low carbon bainitic steel: The key role of refining prior austenite grain size, J. Alloys Compd., 710(2017), p. 702.

    Article  CAS  Google Scholar 

  35. Z.Q. Wang, X.L. Wang, Y.R. Nan, C.J. Shang, X.M. Wang, K. Liu, and B. Chen, Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique, Mater. Charact., 138(2018), p. 67.

    Article  CAS  Google Scholar 

  36. H. Qiu, L.N. Wang, J.G. Qi, H. Zuo, and K. Hiraoka, Enhancement of fracture toughness of high-strength Cr-Ni weld metals by strain-induced martensite transformation, Mater. Sci. Eng. A, 579(2013), p. 71.

    Article  CAS  Google Scholar 

  37. P.W. Hsu, F.H. Kao, S.H. Wang, J.R. Yang, H.Y. Chang, Y.M. Wang, and Q.X. Lin, Twinned formation in weld metal of titanium bearing nano precipitated high strength steel, Mater. Chem. Phys., 136(2012), No. 2–3, p. 1103.

    Article  CAS  Google Scholar 

  38. C.L. Davis and J.E. King, Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone. Part I. Fractographic evidence, Metall. Mater. Trans. A, 25(1994), No. 3, p. 563.

    Article  Google Scholar 

  39. X. Luo, X.H. Chen, T. Wang, S.W. Pan, and Z.D. Wang, Effect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel, Mater. Sci. Eng. A, 710(2018), p. 192.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-AT-19-002), the Domain Foundation of Equipment Advance Research of the 13th Five-year Plan (No. 61409220121), and the National Natural Science Foundation of China (No. 51971031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-hua Chen or Zi-dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xh., Chen, Xh., Pan, Sw. et al. Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu-Nb addition. Int J Miner Metall Mater 28, 120–130 (2021). https://doi.org/10.1007/s12613-020-2159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2159-0

Keywords

Navigation