Skip to main content
Log in

On the Hot Deformation Behavior of a Ni-Free Austenitic Stainless Steel Interstitially Alloyed with Low Nitrogen Content

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot deformation behavior of a Ni-free, Fe-17Cr-12Mn-0.28N-0.06C (wt.%) austenitic stainless steel, hereinafter coded as FeCrMnN, was investigated using hot compression tests conducted under different deformation conditions comprising temperature and strain rate ranges of 800-1200 °C and 0.01-10 s−1, respectively. While the hot deformation at high strain rate and low temperatures (e.g., 10 s−1 and 800 or 900 °C) showed essentially dynamic recovery, resulting in a pancake-shaped microstructure, most of the other conditions exhibited occurrence of dynamic recrystallization (DRX). Increasing deformation temperature and decreasing strain rate showed a decrease in the critical stress and strain for initiating DRX. In general, DRX resulted in extensive microstructural reconstitution and grain refinement. For instance, hot deformation at 1000 °C/0.01 s−1 resulted in a fully recrystallized fine-grained microstructure with an average grain size of about 15 μm in comparison with the initial grain size of 60 µm. Increasing the temperature enhanced grain growth, but an increase in strain rate resulted in a finer grain structure. The amount of delta ferrite in the present steel varied under different conditions of deformation such that the lowest amount of delta ferrite (about 4.5%) was observed at 1000 °C. The activation energy of deformation (Qdef) for the present FeCrMnN steel with the initial grain size of 60 µm was estimated to be about 502 kJ/mol, which is higher than that of the conventional austenitic stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Rep., 2009, 65, p 39–104

    Article  Google Scholar 

  2. D.W. Kim, Influence of Nitrogen-Induced Grain Refinement on Mechanical Properties of Nitrogen Alloyed Type 316LN Stainless Steel, J. Nucl. Mater., 2012, 420, p 473–478

    Article  CAS  Google Scholar 

  3. J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207, p 159–169

    Article  Google Scholar 

  4. H. Hänninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen, Effects of Processing and Manufacturing of High Nitrogen-Containing Stainless Steels on Their Mechanical, Corrosion and Wear Properties, J. Mater. Process. Technol., 2001, 117(3), p 424–430

    Article  Google Scholar 

  5. H. Ha, T. Lee, C. Oh, and S. Kim, Effects of Combined Addition of Carbon and Nitrogen on Pitting Corrosion Behavior of Fe-18Cr-10Mn Alloys, Scripta Mater., 2009, 61, p 121–124

    Article  CAS  Google Scholar 

  6. Z. Jiang, Z. Zhang, H. Li, Z. Li, and Q. Ma, Microstructural Evolution and Mechanical Properties of Aging High Nitrogen Austenitic Stainless Steels, Int. J. Miner. Metall. Mater., 2010, 17(6), p 729–736

    Article  CAS  Google Scholar 

  7. M. Saucedo-Muñoz, Y. Watanabe, T. Shoji, and H. Takahashi, Effect of Microstructure Evolution on Fracture Toughness in Isothermally Aged Austenitic Stainless Steels for Cryogenic Applications, Cryogenics, 2000, 40(11), p 693–700

    Article  Google Scholar 

  8. K. Yang and Y. Ren, Nickel-Free Austenitic Stainless Steels for Medical Applications, Sci. Technol. Adv. Mater., 2010, 11(1), p 014105

    Article  Google Scholar 

  9. Y. Han, G. Qiao, J. Sun, and D. Zou, A Comparative Study on Constitutive Relationship of As-Cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103

    Article  CAS  Google Scholar 

  10. G. Dieter, H. Kuhn, and S. Semiatin, Handbook of Workability and Process Design, ASM International, Almere, 2003

    Google Scholar 

  11. D. Banabic, H.J. Bunge, K. Pöhlandt, and A.E. Tekkaya, Formability of Metallic Materials : Plastic Anisotropy, Formability Testing, Forming Limits, Springer, New York, 2000

    Book  Google Scholar 

  12. N.D. Ryan, H.J. McQueen, and E. Evangelista, Dynamic Recovery and Strain Hardening in the Hot Deformation of Type 317 Stainless Steel, Mater. Sci. Eng., 1986, 81, p 259–272

    Article  CAS  Google Scholar 

  13. N.D. Ryan, H.J. McQueen, and J.J. Jonas, The Deformation Behavior of Types 304, 316, and 317 Austenitic Stainless Steels During Hot Torsion, Can. Metall. Q., 1983, 22(3), p 369–378

    Article  Google Scholar 

  14. N.D. Ryan and H.J. McQueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Process. Technol., 1990, 21(2), p 177–199

    Article  Google Scholar 

  15. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metall. Mater. Trans. A, 2008, 39, p 1359–1370

    Article  Google Scholar 

  16. H.J. McQueen and J.J. Jonas, Recent Advances in Hot Working: Fundamental Dynamic Softening Mechanisms, J. Appl. Met. Work., 1984, 3(3), p 233–241

    Article  CAS  Google Scholar 

  17. H.J. McQueen and C.A.C. Imbert, Dynamic Recrystallization: Plasticity Enhancing Structural Development, J. Alloys Compd., 2004, 378, p 35–43

    Article  CAS  Google Scholar 

  18. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004

    Google Scholar 

  19. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207

    Article  CAS  Google Scholar 

  20. J. Moon, T. Lee, J. Shin, and J. Lee, Hot Working Behavior of a Nitrogen-Alloyed Fe-18Mn-18Cr-N Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 594, p 302–308

    Article  CAS  Google Scholar 

  21. M. Tendo, Y. Tadokoro, K. Suetsugu, and T. Nakazawa, Effects of Nitrogen, Niobium and Molybdenum on Strengthening of Austenitic Stainless Steel Produced by Thermo-Mechanical Control Process, ISIJ Int., 2001, 41, p 262–267

    Article  CAS  Google Scholar 

  22. M. Guo, Z. Wang, Z. Zhou, S. Sun, and W. Fu, Effect of Nitrogen Content on Hot Deformation Behavior and Grain Growth in Nuclear Grade 316LN Stainless Steel, Adv. Mater. Sci. Eng., 2015, 2015, p 427945

    Google Scholar 

  23. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Influence of Strain Rate and State of Stress on the Formation of Ferrite in Stainless Steel Type AISI, 304 During Hot Working, Mater. Lett., 1996, 26, p 161–165

    Article  CAS  Google Scholar 

  24. R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152, p 136–143

    Article  CAS  Google Scholar 

  25. D. Shahriari, M.H. Sadeghi, and K.T. Kim, Effects of Lubricant and Temperature on Friction Coefficient During Hot Forging of Nimonic 115 Superalloy, Kovove Mater., 2011, 49, p 375–383

    CAS  Google Scholar 

  26. H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test, Metall. Mater. Trans. A, 2009, 40, p 2950–2958

    Article  Google Scholar 

  27. H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot Deformation Behavior of a Medium Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882

    Article  Google Scholar 

  28. A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684

    Article  CAS  Google Scholar 

  29. H. Fu-xiang, W. Xin-hua, Z. Jiong-ming, J. Chen-xi, F. Yuan, and Y. Yan, Situ Observation of Solidification Process of AISI, 304 Austenitic Stainless Steel, J. Alloys Compd., 2008, 15, p 78–82

    Google Scholar 

  30. A. Dehghan-Manshadi and P.D. Hodgson, Effect of δ-Ferrite Co-existence on Hot Deformation and Recrystallization of Austenite, J. Mater. Sci., 2008, 43, p 6272–6277

    Article  CAS  Google Scholar 

  31. J.J. Jonas, C.M. Sellars, and W. Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1969, 14(1), p 1–24

    Google Scholar 

  32. R. Nkhoma, C. Siyasiya, and W. Stumpf, Hot Workability of AISI, 321 and AISI, 304 Austenitic Stainless Steels, J. Alloys Compd., 2014, 595, p 103–112

    Article  CAS  Google Scholar 

  33. Z. Wang, W. Fu, S. Sun, H. Li, Z. Lv, and D. Zhao, Mechanical Behavior and Microstructural Change of a High Nitrogen CrMn Austenitic Stainless Steel During Hot Deformation, Metall. Mater. Trans. A, 2010, 41, p 1025–1032

    Article  Google Scholar 

  34. B. Gan, M. Zhang, H. Li, Y. Yao, and L. Li, A Modified Constitutive Model and Dynamic Recrystallization Behavior of High-N Mn18Cr18 Alloy, Steel Res. Int., 2017, 87, p 1–14

    Google Scholar 

  35. H. Li, W. Jiao, H. Feng, X. Li, Z. Jiang, G. Li, L. Wang, G. Fan, and P. Han, Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel Under Hot Compression, Metals, 2016, 6, p 223

    Article  Google Scholar 

  36. T. Xi, C. Yang, M. Babar Shahzad, and K. Yang, Study on the Processing Map and Hot Deformation Behavior of a Cu-Bearing 317LN Austenitic Stainless Steel, Mater. Des., 2015, 87, p 303–312

    Article  CAS  Google Scholar 

  37. H. Feng, Z. Jiang, H. Li, W. Jiao, X. Li, H. Zhu, S. Zhang, B. Zhang, and M. Cai, Hot Deformation Behavior and Microstructural Evolution of High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N, Steel Res. Int., 2017, 87, p 1700149

    Article  Google Scholar 

  38. V. Gavriljuk, Y. Petrov, and B. Shanina, Effect of Nitrogen on the Electron Structure and Stacking Fault Energy in Austenitic Steels, Scripta Mater., 2006, 55, p 537–540

    Article  CAS  Google Scholar 

  39. I.A. Yakubtsov, A. Ariapour, and D.D. Perovic, Effect of Nitrogen on Stacking Fault Energy, Acta Mater., 1999, 47, p 1271–1279

    Article  CAS  Google Scholar 

  40. L. Yu-Ping, Z. Yong, R. Fan, C. Hai-Tao, W. Yu-Qing, and S. Jie, Hot Working of High Nitrogen Austenitic Stainless Steel, J. Iron Steel Res., 2010, 17(10), p 45–49

    Article  Google Scholar 

  41. A. Sarkar and J.K. Chakravartty, Investigation of Progress in Dynamic Recrystallization in Two Austenitic Stainless Steels Exhibiting Flow Softening, J. Metall. Eng., 2013, 2, p 130–136

    Google Scholar 

  42. M. Jafari and A. Najafizadeh, Comparison Between the Methods of Determining the Critical Stress for Initiation of Dynamic Recrystallization in 316 Stainless Steel, J. Mater. Sci. Technol., 2008, 24, p 840–844

    CAS  Google Scholar 

  43. S. Kim and Y. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng. A, 2001, 311, p 108–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kermanpur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshidi, H., Kermanpur, A., Somani, M.C. et al. On the Hot Deformation Behavior of a Ni-Free Austenitic Stainless Steel Interstitially Alloyed with Low Nitrogen Content. J. of Materi Eng and Perform 27, 6765–6779 (2018). https://doi.org/10.1007/s11665-018-3766-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3766-z

Keywords

Navigation