Skip to main content
Log in

Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss ~ 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss ~ 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness (Ra = 6.53 µm) compared to the sample sintered at 1500 °C (Ra = 0.66 µm) corroborating the abrasion wear test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Schulz and T. Moriwaki, High-Speed Machining, CIRP. Ann. Manuf. Tech, 1992, 41, p 637–643

    Article  Google Scholar 

  2. D. Jianxin, C. Tongkun, D. Zeliang, L. Jianhua, S. Junlong, and Z. Jinlong, Tribological Behaviors of Hot-Pressed Al2O3/TiC Ceramic Composites with the Additions of CaF2 Solid Lubricants, J. Euro Ceram. Soc., 2006, 26, p 1317–1323

    Article  Google Scholar 

  3. D. Jianxin, Z. Hui, W. Ze, L. Yunsong, X. Youqiang, and L. Shipeng, Unlubricated Friction and Wear Behaviors of Al2O3/TiC Ceramic Cutting Tool Materials from High Temperature Tribological Tests, Int. J. Refractory Met. Hard Mater., 2012, 35, p 17–26

    Article  Google Scholar 

  4. D. Jianxin, D. Zeliang, Z. Jun, L. Jianfeng, and C. Tongkun, Unlubricated Friction and Wear Behaviors of Various Alumina-Based Ceramic Composites Against Cemented Carbide, Ceram. Int., 2005, 32, p 499–507

    Article  Google Scholar 

  5. A. Krell and D. Klaffke, Effects of Grain Size and Humidity on Fretting Wear in Fine-Grained Alumina, Al2O3/TiC, and Zirconia, J. Am. Ceram. Soc., 1996, 79, p 1139–1146

    Article  Google Scholar 

  6. P.C. Milak, F.D. Minatto, A. De Noni Jr., and O.R.K. Montedo, Wear Performance of Alumina-Based Ceramics a Review of the Influence of Microstructure on Erosive Wear, Cerâmica, 2015, 61, p 88–103

    Article  Google Scholar 

  7. W. Grzesik, Wear Development on Wiper Al2O3-TiC Mixed Ceramic Tools in Hard Machining of High Strength Steel, Wear, 2009, 9, p 1021–1028

    Article  Google Scholar 

  8. M.A. Moore and F.S. King, Abrasive Wear of Brittle Solids, Wear, 1980, 60, p 123–140

    Article  Google Scholar 

  9. E. Hornbogen, The Role of Fracture Toughness in the Wear of Metals, Wear, 1975, 33, p 251–259

    Article  Google Scholar 

  10. A.G. Evans and D.B. Marshall, Wear Mechanisms in Ceramics, in Fundamentals of Friction and Wear of Materials, ed. D.A. Rigney, American Society of Metallurgy, Columbus OH, 1981, pp 439–452.

  11. K. Adachi and I.M. Hutchings, Sensitivity of Wear Rates in the Micro-scale Abrasion Test to Test Conditions and Material Hardness, Wear, 2005, 258, p 318–321

    Article  Google Scholar 

  12. A.G. Evans, Perspective on the Development of High-Toughness Ceramics, J. Am. Ceram. Soc., 1990, 73, p 187–206

    Article  Google Scholar 

  13. T. Hungr, J. Galy, and A. Castro, Nanostructured Ceramics of 0.92PbZn (1/3)Nb(2/3)O(3)-0.08PbTiO(3) Processed by SPS of Nanocrystalline Powders Obtained by Mechanosynthesis, Adv. Eng. Mater., 2009, 15, p 615–631

    Article  Google Scholar 

  14. D.L. Zhang, Processing of Advanced Materials Using High Energy Mechanical Milling, Prog. Mater Sci., 2004, 49, p 537–560

    Article  Google Scholar 

  15. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, Spark Plasma Sintering of Alumina, J. Am. Ceram. Soc., 2002, 85, p 1921–1927

    Article  Google Scholar 

  16. B.N. Kim, K. Hiraga, K. Morita, and H. Yoshida, Spark Plasma Sintering of Plasma Sintering of Transparent Alumina, Scr. Mater., 2007, 57, p 607–610

    Article  Google Scholar 

  17. J.G. Santanach, A. Weibel, C. Estourne’s, Q. Yang, C.H. Laurent, and A. Peigney, Spark Plasma Sintering of Alumina: Study of Parameters, Formal Sintering Analysis and Hypotheses on the Mechanism(s) Involved in Densification and Grain Growth, Acta Mater., 2011, 59, p 1400–1408

    Article  Google Scholar 

  18. R.A. Cutler, A.C. Hurford, and A.V. Virkar, Pressureless Sintered TiC-Alumina, Mater. Sci. Eng., 1988, 3, p 183–192

    Article  Google Scholar 

  19. S. Hernandez, High Temperature Wear Processes Ph.D. Thesis, Luleå University of Technology, Graphic Production 2014.

  20. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, T. Mater. Res., 1992, 7, p 1564–1583

    Article  Google Scholar 

  21. N. Radhika and R. Raghu, Three Body Abrasion Wear Behaviour of Functionally Graded Aluminium/B4C Metal Matrix Composite Using Design of Experiments, Proc. Eng., 2014, 97, p 713–722

    Article  Google Scholar 

  22. R. Kumar, A.K. Chaubey, S. Bathula, B.B. Jha, and A. Dhar, Synthesis and Characterization of Al2O3-TiC Nano-Composite by Spark Plasma Sintering, Int. J. Refract. Met. Hard Mater., 2016, 54, p 304–308

    Article  Google Scholar 

  23. K.H. Zum Gahr, Wear by Hard Particles, Tribol. Int., 1998, 31, p 587–596

    Article  Google Scholar 

  24. J.H. Lee, S.K. Ko, and C.W. Won, Sintering Behavior of Al2O3-TiC Composite Powder Prepared by SHS Process, Mater. Res. Bull., 2001, 36, p 989–996

    Article  Google Scholar 

  25. N. Liu, M. Shi, Y.D. Xu, X.Q. You, P.P. Ren, and J.P. Feng, Effect of Starting Powders Size on the Al2O3–TiC composites, Int. J. Refract. Met. Hard Mater., 2004, 22, p 265–269

    Article  Google Scholar 

  26. H.E. Zadeh, M.O. Mohammad, and M.G. Kakroudi, Investigation the Effect of Sintering Temperature on Young’s Modulus Evaluation and Thermal Shock Behavior of a Cordierite–Mullite Based Composite, Mater. Des., 2013, 45, p 571–575

    Article  Google Scholar 

  27. S. Meir, S. Kalabukhov, and S. Hayun, Low Temperature Spark Plasma Sintering of Al2O3–TiC Composites, Ceram. Int., 2014, 40, p 12187–12192

    Article  Google Scholar 

  28. J. Vite, M. Vite, M. Castillo, J.R. Laguna-Camacho, O. Susarrey, and J. Soto, Erosive Wear on Ceramic Materials Obtained FROM Solid Residuals and Volcanic Ashes”, Tribol. Int., 2010, 43, p 1943–1950

    Article  Google Scholar 

  29. S. Kangwantrakool and K. Shinohara, New Design of Microstructure of WC–Co/TiC–Al2O3 Composite Materials by Mechanical Coating of Particles, Int. J. Refract. Met. Hard Mater., 2002, 49, p 1070–1075

    Google Scholar 

  30. D. Ramesh, R.P. Swamy, and T.K. Chandrashekar, Sand Abrasive Wear Behaviour of Aluminium-Frit Particulate Metal Matrix Composites, Int. J. Emerg. Trends. Eng. Dev., 2012, 5, p 231–237

    Google Scholar 

  31. M. Singh, O.P. Modi, R. Dasgupta, and A.K. Jha, High Stress Abrasive Wear Behaviour of Aluminium Alloy–Granite Particle Composite, Wear, 1999, 233–235, p 455–461

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to CSIR, New Delhi, for providing financial support to carry out the above work through supra-institutional Project (No. ESC- 0401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Chaubey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Chaubey, A.K., Bathula, S. et al. Al2O3-TiC Composite Prepared by Spark Plasma Sintering Process: Evaluation of Mechanical and Tribological Properties. J. of Materi Eng and Perform 27, 997–1004 (2018). https://doi.org/10.1007/s11665-017-3113-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3113-9

Keywords

Navigation