Skip to main content

Advertisement

Log in

Mechanical and Friction Properties of Al2O3-ZrO2-TiC Composite with Varying TiC Contents Fabricated by Spark Plasma Sintering

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al2O3-ZrO2-TiC composites with different proportions of TiC were prepared by ball milling and spark plasma sintering. Structural characterization revealed that the composites exhibited fine and homogeneous microstructures. No other phases except α-Al2O3, t-ZrO2 and c-TiC were detected by XRD in all Al2O3-ZrO2-TiC composites. The internal stress induced by the mismatch of the thermal expansion coefficients result in a shift of t-ZrO2 diffraction peak. SEM and TEM observations showed that the Al2O3 grain size was inversely proportional to the TiC content, while the grain sizes of ZrO2 and TiC stayed nearly constant. HRTEM micrograph presented that there are glassy phase boundaries with thickness of several nanometers around the TiC grains. As the TiC content increases, the relative density and hardness decreased from 99.2 to 97.7 pct and from 21.0 to 15.8 GPa, respectively. Compared with Al2O3-ZrO2 matrix, composites with TiC exhibited lower flexural strength but enhanced fracture toughness. Composite with TiC of 10 vol pct possessed the best friction property. The increased porosity was mainly responsible for the deterioration of mechanical and friction properties except for the fracture toughness. The improvement in fracture toughness with increasing TiC content was attribute to the crack deflection and pinning effects induced by the TiC particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1. Y.H. Fang, N. Chen, G.P. Du, M.X. Zhang, X.R. Zhao and J. Wu: Ceram. Int. 2019, vol. 45, pp. 16504-11.

    Article  CAS  Google Scholar 

  2. 2. O.L. Ighodaro and O.I. Okoli: Int. J. Appl. Ceram. Technol. 2008, vol. 5, pp. 313-23.

    Article  CAS  Google Scholar 

  3. S.F. Shi, T. Sekino, S. Cho and T. Goto: Mater. Sci. Eng., A 2020, vol. 777, p. 139066

  4. 4. J. Zhang, T.B. Zhu, Y. Cheng, S. Sang, Y. Li, D. An and Z. Xie: Ceram. Int. 2020, vol. 46, pp 25719-25

    Article  CAS  Google Scholar 

  5. 5. R.H.J. Hannink, P.M. Kelly and B.C. Muddle: J. Am. Ceram. Soc. 2000, vol. 83, pp. 461-87.

    Article  CAS  Google Scholar 

  6. 6. W. H. Tuan, R.Z. Chen, T.C. Wang, C.H. Cheng and P.S. Kuo: J. Eur. Ceram. Soc. 2002, vol. 22, pp. 2827-33.

    Article  CAS  Google Scholar 

  7. 7. A.Z.A. Azhar, M.M. Ratnam and Z.A. Ahmad: J. Alloys Compd. 2009, vol. 478, pp. 608-14.

    Article  CAS  Google Scholar 

  8. 8. S. Meir, S. Kalabukhov and S. Hayun: Ceram. Int. 2014, vol. 40, pp. 12187-92.

    Article  CAS  Google Scholar 

  9. J.L. Chai, Y.B. Zhu, Z.G. Wang, T.L. Shen, Y.W. Liu, L.J. Niu, S.F. Li, C.F. Yao, M.H. Cui and C. Liu: Mater. Sci. Eng., A 2020, vol. 781, p. 139197.

  10. 10. B. Zhong, G. L. Zhao, X. X. Huang, L. Xia, X. H. Tang, S. C. Zhang and G. W. Wen: J. Eur. Ceram. Soc. 2015, vol. 35, pp. 641-49.

    Article  CAS  Google Scholar 

  11. 11. J. Gong, H. Miao and Z. Zhao, J. Eur. Ceram. Soc. 2001, vol. 21, pp. 2377-81.

    Article  CAS  Google Scholar 

  12. 12. K.F. Cai, D. S. McLachlan, N. Axen and R. Manyatsa: Ceram. Int. 2002, vol. 28, pp. 217-22.

    Article  CAS  Google Scholar 

  13. M. Cheng, H. Liu, Bin Zhao, C. Huang, P. Yao and B. Wang, Ceram. Int. 2017, vol. 43, pp. 13869-74.

  14. 14. P.S. Art and W. Oungkulsolmongkol: J. Met. Mater. Miner. 2010, vol. 20, pp. 71-78.

    Google Scholar 

  15. 15. I. Ahmad, S. Ahmed, T. Subhani, K. Saeed, M. Islam, N. Wang and Y. Zhu: Curr. Appl. Phys. 2016, vol. 16, pp. 1649-58.

    Article  Google Scholar 

  16. 16. C.F. Gutiérrez-González, M. Suarez, S. Pozhidaev, S. Rivera, P. Peretyagin, W. Solís, L.A. Díaz, A. Fernandez and R. Torrecillas: J. Eur. Ceram. Soc. 2016, vol. 36, pp. 2149-52.

    Article  Google Scholar 

  17. 17. U. Schmitt-Radloff, F. Kern and R. Gadow: J. Eur. Ceram. Soc. 2018, vol. 38, pp. 3585-94.

    Article  CAS  Google Scholar 

  18. 18. D. Sun, X. Jiang, L. Su, H. Sun, C. Hu, T. Song and Z. Luo: Ceram. Int. 2020, vol. 46, pp. 20068-80.

    Article  CAS  Google Scholar 

  19. Z.D.I. Sktani, N.A. Rejab, A.F.Z. Rosli, A. Arab and Z.A. Ahmad: J. Rare Earth. 2020. https://doi.org/10.1016/j.jre.2020.06.005.

    Article  Google Scholar 

  20. 20. Z. Yin, J. Yuan, C. Huang, Z. Wang, L. Huang and Y. Cheng: Ceram. Int. 2016, vol. 42, pp. 1982-89.

    Article  CAS  Google Scholar 

  21. 21. J. Deng, H. Zhang, Z. Wu, Y. Lian, Y. Xing and S. Li: Int. J. Refract. Met. H. 2012, vol. 35, pp. 17-26.

    Article  CAS  Google Scholar 

  22. 22. Z.K. Huang, A. Rosenflanz and I.W. Chen: J. Am. Ceram. Soc. 1997. vol 80: pp. 1256-1262.

    Article  CAS  Google Scholar 

  23. 23. T. Uhlířová, and W. Pabst: J. Eur. Ceram. Soc. 2020. 40(8): p. 3181-90.

    Article  Google Scholar 

  24. 24. Y. Shinoda, Y. Suzuki and K. Yoshida: J. Asian Ceram. Soc., 2013. vol 1, pp. 267-73.

    Article  Google Scholar 

  25. Rahaman, M.N., Ceramic Processes and Sintering. Second edition, Marcel Dekker, New York, 2003.

    Google Scholar 

  26. 26. N. Bamba, Y. Choa, T. Sekino and K. Niihara: J. Eur. Ceram. Soc. 1998. vol 18, pp. 693-699.

    Article  CAS  Google Scholar 

  27. 27. K. Ahmad and W. Pan: Metall. Trans. A 2014, vol. 45, pp. 6271-6276.

    Article  CAS  Google Scholar 

  28. 28. A.A. Mahday, M.S. Eskandarany, H.A. Ahmed and A.A. Amer: J. Alloys Compd. 2000, vol. 299, pp. 244-53.

    Article  CAS  Google Scholar 

  29. 29. D. Hong, Z. Yin, S. Yan and W. Xu: Ceram. Int. 2019, vol. 45, pp. 11826-32.

    Article  CAS  Google Scholar 

  30. 30. H. Manshor, S.M. Aris, A.Z.A. Azhar, E.C. Abdullah and Z.A. Ahmad: Ceram. Int. 2015, vol. 41, pp. 3961-67.

    Article  CAS  Google Scholar 

  31. 31. R. Kumar, A.K. Chaubey, S. Bathula, B.B. Jha and A. Dhar: Int. J. Refract. Met. H. 2016, vol. 54, pp. 304-08.

    Article  CAS  Google Scholar 

  32. 32. F. Qi, Z. Wang, J. Wu, H. Xu, J. Kou and L. Zhang: Ceram. Int. 2017, vol. 43, pp. 10691-97.

    Article  CAS  Google Scholar 

  33. 33. Yin, Z., et al., Mater. Sci. Eng. A, 2013. 577: pp. 9-15.

    Article  CAS  Google Scholar 

  34. Y.T. O, J.B. Koo, K.J. Hong, J.S. Park and D.C. Shin: Mater. Sci. Eng. A 2004, vol. 374, pp. 191–95.

  35. 35. Y.F. Zhang, L.J. Wang, W. Jiang, G.Z. Bai and L.D. Chen: Mater. Trans. 2005, vol. 46, pp. 2015-19.

    Article  CAS  Google Scholar 

  36. 36. I. Hussainova, N. Voltšihhin, E. Cura and S.P. Hannula: Mater. Sci. Eng. A 2014, vol. 597, pp. 75-81.

    Article  CAS  Google Scholar 

  37. 37. Y.H. Fei, C.Z. Huang, H.L. Liu and B. Zou: Ceram. Int. 2014, vol. 40, pp. 10205-09.

    Article  CAS  Google Scholar 

  38. 38. X.P.Zhang, J.H. Ouyang, Y.J. Wang, Z.G. Liu and Y.M. Wang: J. Mater. Eng. Perform. 2015, vol. 24, pp. 3615-21.

    Article  CAS  Google Scholar 

  39. 39. J.X. Deng, T.K. Cao, Z.L. Ding, J.H. Liu, J.L. Sun and J.L. Zhao: J. Eur. Ceram. Soc. 2006, vol. 26, pp. 1317-23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China under Grant Nos. 11805245 and 11505247, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDA21010202, the Joint Funds of the National Natural Science Foundation of China under Grant No. U1832206 and Sichuan Science and Technology Program under Grant No. 2018JZ0014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yabin Zhu or Tielong Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 6, 2020; accepted December 3, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Chai, J., Shen, T. et al. Mechanical and Friction Properties of Al2O3-ZrO2-TiC Composite with Varying TiC Contents Fabricated by Spark Plasma Sintering. Metall Mater Trans A 52, 767–775 (2021). https://doi.org/10.1007/s11661-020-06122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06122-3

Navigation