Skip to main content
Log in

Research on Photocatalytic Properties of TiO2-Graphene Composites with Different Morphologies

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The TiO2-graphene (TiO2-GR) composites have been successfully synthesized through the hydrothermal reaction. Different structures of TiO2-GR composites were modified using graphene oxide (GO) and different titanium sources in hydrothermal conditions. The structure and properties of the photocatalysts have been characterized by field emission scanning electron microscope (FESEM), x-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), photoluminescence spectra (PL), UV–vis diffuse reflectance spectra (DRS), and Brunauer–Emmett–Teller (BET). The results showed that due to the larger interfacial contact between TiO2 and graphene, and its greater surface area, the poriferous TiO2-GR composite exhibited the best photocatalytic properties and adsorption performance compared with the other nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.M. Wang, H.Y. Wang, Y.C. Ling, Y.C. Tang, X.Y. Yang, R.C. Fitzmorris, C.C. Wang, J.Z. Zhang, and Y. Li, Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Lett., 2011, 11(7), p 3026–3033

    Article  Google Scholar 

  2. R. Leary and A. Westwood, Carbonaceous Nanomaterials for the Enhancement of TiO2 Photocatalysis, Carbon, 2011, 49(3), p 741–772

    Article  Google Scholar 

  3. Q.L. Jin, M. Fujishima, and H. Tada, Visible-Light-Active Iron Oxide-Modified Anatase Titanium(IV) Dioxide, J. Phys. Chem. C, 2011, 115(14), p 6478–6483

    Article  Google Scholar 

  4. S. Chusaksri, J. Lomda, T. Saleepochn, and P. Sutthivaiyakit, Photocatalytic Degradation of 3,4-Dichlorophenylurea in Aqueous Gold Nanoparticles-Modified Titanium Dioxide Suspension Under Simulated Solar Light, J. Hazard. Mater., 2011, 190(1–3), p 930–937

    Article  Google Scholar 

  5. S. Ahmed, M.G. Rasul, R. Brown, and M.A. Hashib, Influence of Parameters on the Heterogeneous Photocatalytic Degradation of Pesticides and Phenolic Contaminants in Wastewater: A Short Review, J. Environ. Manag., 2011, 92(3), p 311–330

    Article  Google Scholar 

  6. J. Jiang, D.R. Chen, and P. Biswas, Synthesis of Nanoparticles in a Flame Aerosol Reactor with Independent and Strict Control of Their Size, Crystal Phase and Morphology, Nanotechnology, 2007, 18(28)

  7. B. Liu, Y. Huang, Y. Wen, L. Du, W. Zeng, Y. Shi, F. Zhang, G. Zhu, X. Xu, and Y. Wang, Highly Dispersive 001 Facets-Exposed Nanocrystalline Tio2 on High Quality Graphene as a High Performance Photocatalyst, J. Mater. Chem., 2012, 22(15), p 7484–7491

    Article  Google Scholar 

  8. K.F. Zhou, Y.H. Zhu, X.L. Yang, X. Jiang, and C.Z. Li, Preparation of Graphene-TiO2 Composites with Enhanced Photocatalytic Activity, New J. Chem., 2011, 35(2), p 353–359

    Article  Google Scholar 

  9. V. Subramanian, E. Wolf, and P.V. Kamat, Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?, J. Phys. Chem. B, 2001, 105(46), p 11439–11446

    Article  Google Scholar 

  10. C. Ratanatawanate, A. Chyao, and K.J. Balkus, S-Nitrosocysteine-Decorated PbS QDs/TiO2 Nanotubes for Enhanced Production of Singlet Oxygen, J. Am. Chem. Soc., 2011, 133(10), p 3492–3497

    Article  Google Scholar 

  11. T. Hirakawa and P.V. Kamat, Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters Under UV-Irradiation, J. Am. Chem. Soc., 2005, 127(11), p 3928–3934

    Article  Google Scholar 

  12. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, 2001, 293(5528), p 269–271

    Article  Google Scholar 

  13. S. Park and R.S. Ruoff, Chemical Methods for the Production of Graphenes, Nat. Nanotechnol., 2009, 4(4), p 217–224

    Article  Google Scholar 

  14. A.K. Geim, Graphene: Status and Prospects, Science, 2009, 324(5934), p 1530–1534

    Article  Google Scholar 

  15. P.V. Kamat, Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support, J. Phys. Chem. Lett., 2009, 1(2), p 520–527

    Article  Google Scholar 

  16. H. Zhang, P. Xu, G. Du, Z. Chen, K. Oh, D. Pan, and Z. Jiao, A Facile One-Step Synthesis of TiO2/Graphene Composites for Photodegradation of Methyl Orange, Nano Res., 2010, 4(3), p 274–283

    Article  Google Scholar 

  17. S. Morales-Torres, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, and A.M.T. Silva, Graphene Oxide-P25 Photocatalysts for Degradation of Diphenhydramine Pharmaceutical and Methyl Orange Dye, Appl. Surf. Sci., 2013, 275, p 361–368

    Article  Google Scholar 

  18. Q. Zhang, Y. He, X. Chen, D. Hu, L. Li, T. Yin, and L. Ji, Structure and Photocatalytic Properties of TiO2-Graphene Oxide Intercalated Composite, Chin. Sci. Bull., 2011, 56(3), p 331–339

    Article  Google Scholar 

  19. T.-D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.-D. Pham, S. Kim, J.S. Chung, E.J. Kim, and S.H. Hur, The Role of Graphene Oxide Content on the Adsorption-Enhanced Photocatalysis of Titanium Dioxide/Graphene Oxide Composites, Chem. Eng. J., 2011, 170(1), p 226–232

    Article  Google Scholar 

  20. Y. Zhou, Y. Huang, D. Li, and W. He, Three-Dimensional Sea-Urchin-Like Hierarchical TiO2 Microspheres Synthesized by a One-Pot Hydrothermal Method and Their Enhanced Photocatalytic Activity, Mater. Res. Bull., 2013, 48(7), p 2420–2425

    Article  Google Scholar 

  21. N. Zhang, M.Q. Yang, S. Liu, Y. Sun, and Y.J. Xu, Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts, Chem. Rev., 2015, 115(18), p 10307–10377

    Article  Google Scholar 

  22. N. Zhang and Y.-J. Xu, The Endeavour to Advance Graphene–Semiconductor Composite-Based Photocatalysis, Cryst. Eng. Commun., 2016, 18(1), p 24–37

    Article  Google Scholar 

  23. C. Han, N. Zhang, and Y.-J. Xu, Structural Diversity of Graphene Materials and Their Multifarious Roles in Heterogeneous Photocatalysis, Nano Today, 2016, 11(3), p 351–372

    Article  Google Scholar 

  24. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, and J.H. Li, P25-Graphene Composite as a High Performance Photocatalyst, ACS Nano, 2010, 4(1), p 380–386

    Article  Google Scholar 

  25. J.C. Liu, H.W. Bai, Y.J. Wang, Z.Y. Liu, X.W. Zhang, and D.D. Sun, Self-Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two-Phase Interface and Their Anti-Recombination in Photocatalytic Applications, Adv. Funct. Mater., 2010, 20(23), p 4175–4181

    Article  Google Scholar 

  26. H. Wu, J. Fan, Y. Yang, E. Liu, X. Hu, Y. Ma, X. Fan, and C. Tang, Hydrothermal Synthesis of Graphene-TiO2 Nanowire with An Enhanced Photocatalytic Activity, Russ. J. Phys. Chem. A, 2015, 89(7), p 1189–1194

    Article  Google Scholar 

  27. A. Peter, L. Mihaly-Cozmuta, A. Mihaly-Cozmuta, C. Nicula, A. Jastrzębska, P. Kurtycz, and A. Olszyna, Morphology, Structure, and Photoactivity of Two Types of Graphene Oxide–TiO2 Composites, Chem. Pap., 2015, 69(6), p 839–855

    Article  Google Scholar 

  28. Z. Qianqian, B. Tang, and H. Guoxin, High Photoactive and Visible-Light Responsive Graphene/Titanate Nanotubes Photocatalysts: Preparation and Characterization, J. Hazard. Mater., 2011, 198, p 78–86

    Article  Google Scholar 

  29. J.F. Shen, M. Shi, N. Li, B. Yan, H.W. Ma, Y.Z. Hu, and M.X. Ye, Facile Synthesis and Application of Ag-Chemically Converted Graphene Nanocomposite, Nano Res., 2010, 3(5), p 339–349

    Article  Google Scholar 

  30. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K.J. Balkus, Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity, Acs Catal., 2012, 2(6), p 949–956

    Article  Google Scholar 

  31. S.W. Liu, C. Liu, W.G. Wang, B. Cheng, and J.G. Yu, Unique Photocatalytic Oxidation Reactivity and Selectivity of TiO2-Graphene Nanocomposites, Nanoscale, 2012, 4(10), p 3193–3200

    Article  Google Scholar 

  32. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, and R. Car, Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Lett., 2008, 8(1), p 36–41

    Article  Google Scholar 

  33. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 2007, 45(7), p 1558–1565

    Article  Google Scholar 

  34. I. Yoon, C.D. Kim, B.K. Min, Y.K. Kim, B. Kim, and W.S. Jung, Characterization of Graphene Sheets Formed by the Reaction of Carbon Monoxide with Aluminum Sulfide, B Korean Chem Soc, 2009, 30(12), p 3045–3048

    Article  Google Scholar 

  35. Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, Engineering the Unique 2D Mat of Graphene to Achieve Graphene-TiO2 Nanocomposite for Photocatalytic Selective Transformation: What Advantage Does Graphene Have Over Its Forebear Carbon Nanotube?, ACS Nano, 2011, 5(9), p 7426–7435

    Article  Google Scholar 

Download references

Acknowledgments

The author further acknowledges the financially supported by the Natural Science Funds of China (Nos. 51204220, 51274263), Chongqing Natural Science Foundation (cstc2013jjB0035), and Key Technology Innovation Projects of Key Industries in Chongqing (cstc2016zdcy-ztzx0020-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Yang, J., Zhao, D. et al. Research on Photocatalytic Properties of TiO2-Graphene Composites with Different Morphologies. J. of Materi Eng and Perform 26, 3263–3270 (2017). https://doi.org/10.1007/s11665-017-2776-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2776-6

Keywords

Navigation