Skip to main content
Log in

Microstructure and Photocatalytic Properties of TiO2–Reduced Graphene Oxide Nanocomposites Prepared by Solvothermal Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

TiO2–reduced graphene oxide (RGO) nanocomposites have been prepared by a solvothermal method using Ti(SO4)2 and graphene oxide (GO) in aqueous/ethanol suspension and their microstructure and optical and photocatalytic properties investigated. The results show that, for all cases, graphene oxide was partially reduced to RGO during the solvothermal process, and anatase TiO2 nanoparticles (~ 10 nm) accumulated on the surface of RGO sheets. The formal valence state Ti4+ was identified in all cases, whereas Ti–O–C bond can form in the TiO2–RGO nanocomposites due to the strong chemical bonding effect. On increasing the mass ratio (x) of GO/Ti(SO4)2, the bandgap of the nanocomposites became narrow, thus extending the absorption wavelength range. TiO2–RGO nanocomposites exhibited good photogenerated electron transfer properties as proven by photoluminescence spectra. However, excessive addition of GO (x ≥ 1/40) decreased the photoelectron transfer performance. The photocatalytic activity was studied under ultraviolet (UV) and visible light, being greatly improved with addition of GO at x = 3/200 then decreased at x ≥ 1/40. TiO2–RGO nanocomposite (x ≤ 3/200) also exhibited better photocatalytic performance than pure TiO2 under visible light, indicating increased absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.M. Cui, Chin. J. Rare Met. 1, 107 (2006).

    Google Scholar 

  2. Y.M. Cui, J. Henan Univ. Sci. Technol. Nat. Sci. 1, 94 (2003).

    Google Scholar 

  3. W.R. Shen, W.K. Zhao, F.F. He, and L. You, Prog. Chem. 4, 349 (1998).

    Google Scholar 

  4. W.W. Zhang, H.L. Guo, H.Q. Sun, and R.C. Zeng, Appl. Surf. Sci. 382, 128 (2016).

    Article  CAS  Google Scholar 

  5. O. Iieperuma, K. Tennakone, and W. Dissanayake, Appl. Catal. 62, 1 (1990).

    Article  Google Scholar 

  6. W. Choi, A. Termin, and M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994).

    Article  Google Scholar 

  7. R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).

    Article  CAS  Google Scholar 

  8. H. Sedrati, R. Bensaha, H. Bensouyad, P. Miska, and S. Robert, Mater. Res. Bull. 57, 287 (2014).

    Article  CAS  Google Scholar 

  9. L. Li and H. Xiang, Mater. Sci. Forum 610–613, 382 (2009).

    Article  Google Scholar 

  10. D. Mo and D. Ye, Surf. Coat. Technol. 203, 1154 (2009).

    Article  CAS  Google Scholar 

  11. M. Inagaki, F. Kojin, B. Tryb, M. Toyoda, T. Tsumura, and M. Inagaki, Carbon 43, 1652 (2005).

    Article  CAS  Google Scholar 

  12. P.F. Du, L.X. Song, J. Xiong, N. Li, L.J. Wang, Z.Q. Xi, N.Y. Wang, L.H. Gao, and H.L. Zhu, Electrochim. Acta 87, 651 (2013).

    Article  CAS  Google Scholar 

  13. Y.L. Pang and A. Zuhairi, Chem. Eng. J. 214, 129 (2013).

    Article  CAS  Google Scholar 

  14. S. Morales-Torres, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, and A.M.T. Silva, Environ. Sci. Pollut. Res. 19, 3676 (2012).

    Article  CAS  Google Scholar 

  15. W.Q. Fan, Q.H. Lai, Q.H. Zhang, and Y. Wang, J. Phys. Chem. C 115, 10694 (2011).

    Article  CAS  Google Scholar 

  16. D.T. Wang, X. Li, J.F. Chen, and X. Tao, Chem. Eng. J. 198–199, 547 (2012).

    Article  Google Scholar 

  17. L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, J.L. Figueiredo, J.L. Faria, P. Falaras, and A.M.T. Silva, Appl. Catal. B Environ. 123–124, 241 (2012).

    Article  Google Scholar 

  18. L.J. Luo, Y. Yang, A. Zhang, M. Wang, Y.J. Liu, L.C. Bian, F.Z. Jiang, and X.J. Pan, Appl. Surf. Sci. 353, 469 (2015).

    Article  CAS  Google Scholar 

  19. P. Calza, C. Hadjicostas, V.A. Sakkas, M. Sarro, C. Minero, C. Medana, and T.A. Albanis, Appl. Catal. B Environ. 183, 96 (2016).

    Article  CAS  Google Scholar 

  20. P. Wang, J. Wang, X.F. Wang, H.G. Yu, J.G. Yu, M. Lei, and Y.G. Wang, Appl. Catal. B Environ. 132–133, 452 (2013).

    Article  Google Scholar 

  21. C.P. Athanasekou, S. Morales-Torres, V. Likodimos, and G.E. Ramanos, Appl. Catal. B Environ. 158–159, 361 (2014).

    Article  Google Scholar 

  22. G. Williams, B. Seger, and P.V. Kamat, ACS Nano 2, 1487 (2008).

    Article  CAS  Google Scholar 

  23. I.V. Lightcap, T.H. Kosel, and P.V. Kamat, Nano Lett. 10, 577 (2010).

    Article  CAS  Google Scholar 

  24. B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, Chem. Commun. 46, 3499 (2010).

    Article  CAS  Google Scholar 

  25. T. Xu, L. Zhang, H. Cheng, and Y. Zhu, Appl. Catal. B Environ. 101, 382 (2011).

    Article  CAS  Google Scholar 

  26. X.Y. Zhang, H.P. Li, X.L. Cui, and Y. Lin, J. Mater. Chem. 20, 2801 (2010).

    Article  CAS  Google Scholar 

  27. H. Zhang, X. Lv, Y. Li, Y. Wang, and J.H. Li, ACS Nano 4, 380 (2010).

    Article  CAS  Google Scholar 

  28. Y. Zhang, Z.R. Tang, X. Fu, and Y.J. Xu, ACS Nano 4, 7303 (2010).

    Article  CAS  Google Scholar 

  29. Y. Liang, H. Wang, H.S. Casalongue, Z. Chen, and H. Dai, Nano Res. 3, 701 (2010).

    Article  CAS  Google Scholar 

  30. L. Liu, C. Luo, J. Xiong, Z.X. Yang, Y.B. Zhang, Y.X. Cai, and H.S. Gu, J. Alloys Compd. 690, 771 (2017).

    Article  CAS  Google Scholar 

  31. G.P. Patil, V.S. Bagal, C.R. Mahajan, V.R. Chaudhari, S.R. Suryawanshi, M.A. More, and P.G. Chavan, Vacuum 123, 167 (2016).

    Article  CAS  Google Scholar 

  32. P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, and G. Ding, Int. J. Hydrogen Energy 37, 2224 (2012).

    Article  CAS  Google Scholar 

  33. H. Li and X.L. Cui, Int. J. Hydrogen Energy 39, 19877 (2014).

    Article  CAS  Google Scholar 

  34. Y.Y. Gao, X.P. Pu, D.F. Zhang, G.Q. Ding, X. Shao, and J. Ma, Carbon 50, 4093 (2012).

    Article  CAS  Google Scholar 

  35. Q.J. Xiang, J.G. Yu, and M. Jaroniec, Nanoscale 3, 3670 (2011).

    Article  CAS  Google Scholar 

  36. Z. Zhang, W.S. Yang, X.X. Zou, F.G. Xu, X.D. Wang, B.L. Zhang, and J.L. Tang, J. Colloid Interface Sci. 386, 198 (2012).

    Article  CAS  Google Scholar 

  37. A.A. Ismail, R.A. Geioushy, H. Bouzid, S.A. Al-Sayari, A. Al-Hajry, and D.W. Bahnemann, Appl. Catal. B Environ. 129, 62 (2013).

    Article  CAS  Google Scholar 

  38. A.A. Galuska, J.C. Uht, P.M. Adams, and J.M. Coggi, J. Vac. Sci. Technol. A 6, 2403 (1988).

    Article  CAS  Google Scholar 

  39. A.Y. Stakheev, E.S. Shpiro, and J. Apijok, J. Phys. Chem. 97, 5668 (1993).

    Article  CAS  Google Scholar 

  40. V.V. Atuchin, T.A. Gavrilova, J.C. Grivel, and V.G. Kesler, J. Phys. D Appl. Phys. 42, 035305 (2009).

    Article  Google Scholar 

  41. V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, and Z. Zhang, J. Electron Spectrosc. Relat. Phenom. 152, 18 (2006).

    Article  CAS  Google Scholar 

  42. V.V. Atuchin, L.I. Isaenko, V.G. Kesler, L. Kang, Z. Lin, M.S. Molokeev, A.P. Yelisseyev, and S.A. Zhurkov, J. Phys. Chem. C 117, 7269 (2013).

    Article  CAS  Google Scholar 

  43. K.H. Leong, P. Monash, S. Ibrahim, and P. Saravanan, Sol. Energy 101, 321 (2014).

    Article  CAS  Google Scholar 

  44. S. Pei and H. Cheng, Carbon 50, 3210 (2012).

    Article  CAS  Google Scholar 

  45. S. Park, D.A. Dikin, S.T. Nguyen, and R.S. Ruoff, J. Phys. Chem. C 113, 15801 (2009).

    Article  CAS  Google Scholar 

  46. Z. Fan, W. Kai, J. Yan, T. Wei, L. Zhi, J. Feng, Y. Ren, L. Song, and F. Wei, ACS Nano 5, 191 (2011).

    Article  CAS  Google Scholar 

  47. C. Nethravathi and M. Rajamathi, Carbon 46, 1994 (2008).

    Article  CAS  Google Scholar 

  48. N.R. Khalid, E. Ahmed, Z.L. Hong, and M. Ahmad, Appl. Surf. Sci. 263, 254 (2012).

    Article  CAS  Google Scholar 

  49. P.F. Wang, Y.H. Ao, C. Wang, J. Hou, and J. Qian, J. Hazard. Mater. 223–224, 79 (2012).

    Article  Google Scholar 

  50. D.Y. Liang, C. Cui, H.H. Hu, Y.P. Wang, S. Xu, B.L. Ying, P.G. Li, B.Q. Lu, and H.L. Shen, J. Alloys Compd. 582, 236 (2014).

    Article  CAS  Google Scholar 

  51. J. Hu, H.S. Li, S. Muhammad, Q. Wu, Y. Zhao, and Q.Z. Qiao, J. Solid State Chem. 253, 113 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51602279), Jiangsu Planned Projects for Postdoctoral Research Funds (1601048B), Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middleaged Teachers and Presidents, and the Program for High-end Talents in Yangzhou University, Outstanding Young Backbone Teacher Project of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Dai, S., Li, J. et al. Microstructure and Photocatalytic Properties of TiO2–Reduced Graphene Oxide Nanocomposites Prepared by Solvothermal Method. J. Electron. Mater. 47, 7372–7379 (2018). https://doi.org/10.1007/s11664-018-6677-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6677-8

Keywords

Navigation