Skip to main content
Log in

Flow Softening Index for Assessment of Dynamic Recrystallization in an Austenitic Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study proposes a novel technique to assess dynamic recrystallization (DRX) and related microstructural phenomena during hot deformation of austenite. A ‘Flow Softening Index (FSI)’ has been identified on the basis of investigations on elevated temperature deformation behaviour of austenitic stainless steel. This index corresponds to dominant microstructural phenomena at different deformation conditions. For this investigation, experimental results obtained from isothermal, constant true strain rate compression tests in a temperature range of 1173 (900)-1473 K (1200 °C) and strain rate range of 0.01-100 s−1 have been used. Resultant microstructures have been quantified using average grain size and grain size distributions. The dominant microstructural phenomena have been identified at different conditions using electron backscatter diffraction. Low FSI values are associated with the grain growth, intermediate values with DRX, and high values with the work-hardening and flow localisation phenomena. FSI also quantitatively indexes the average grain size and grain size distributions at different temperature-strain rate combinations. Analysis of the specific deformation conditions, particularly where 3.4 < FSI < 3.5, indicates a common thermo-mechanical origin of flow localisation and DRX. The potential technological implications thereof are discussed and a semi-empirical model of microstructural evolution is developed for the studied material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. H.J. McQueen, Metal Forming: Industrial, Mechanical, Computational and Microstructural, J. Mater. Proc. Technol., 1993, 37, p 3–36

    Article  Google Scholar 

  2. D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46(1), p 69–80

    Article  Google Scholar 

  3. T. Sakai, M. Akben, and J. Jonas, Dynamic Recrystallization During the Transient Deformation of a Vanadium Microalloyed Steel, Acta Metall., 1983, 31(4), p 631–641

    Article  Google Scholar 

  4. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32

    Article  Google Scholar 

  5. B. Derby, The Dependence of Grain Size on Stress During Dynamic Recrystallisation, Acta Metall. Mater., 1991, 39(5), p 955–962

    Article  Google Scholar 

  6. A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization Under Warm Deformation of a 304 Type Austenitic Stainless Steel, Mater. Sci. Eng. A, 1998, 255(1), p 139–147

    Article  Google Scholar 

  7. H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test, Metall. Mater. Trans. A, 2009, 40(12), p 2950

    Article  Google Scholar 

  8. A. Fernández, P. Uranga, B. López, and J. Rodriguez-Ibabe, Dynamic Recrystallization Behavior Covering a Wide Austenite Grain Size Range in Nb and Nb-Ti Microalloyed Steels, Mater. Sci. Eng. A, 2003, 361(1), p 367–376

    Article  Google Scholar 

  9. S. Semiatin and G. Lahoti, The Occurrence of Shear Bands in Isothermal, Hot Forging, Metall. Trans. A, 1982, 13(2), p 275–288

    Article  Google Scholar 

  10. S. Osovski, D. Rittel, and A. Venkert, The Respective Influence of Microstructural and Thermal Softening on Adiabatic Shear Localization, Mech. Mater., 2013, 56, p 11–22

    Article  Google Scholar 

  11. J. Rodríguez-Martínez, G. Vadillo, R. Zaera, J. Fernández-Sáez, and D. Rittel, An Analysis of Microstructural and Thermal Softening Effects in Dynamic Necking, Mech. Mater., 2015, 80, p 298–310

    Article  Google Scholar 

  12. S.N. Murty, B.N. Rao, and B. Kashyap, Identification of Flow Instabilities in the Processing Maps of AISI, 304 Stainless Steel, J. Mater. Process. Technol., 2005, 166(2), p 268–278

    Article  Google Scholar 

  13. D.D. Chen, Y.C. Lin, Y. Zhou, M.S. Chen, and D.X. Wen, Dislocation Substructures Evolution and an Adaptive-Network-Based Fuzzy Inference System Model for Constitutive Behavior of a Ni-Based Superalloy During Hot Deformation, J. Alloys Compd., 2017, 708, p 938–946

    Article  Google Scholar 

  14. Y.X. Liu, Y.C. Lin, and Y. Zhou, A 2D Cellular Automaton Simulation of Hot Deformation Behavior in a Ni-Based Superalloy Under Varying Thermal-Mechanical Conditions, Mater. Sci. Eng. A, 2017, 691, p 88–99

    Article  Google Scholar 

  15. Y.C. Lin, Y.J. Liang, M.S. Chen, and X.M. Chen, A Comparative Study on Phenomenon and Deep Belief Models for Hot Deformation Behaviour of an Al-Zn-Mg-Cu Alloy, Appl. Phys. A, 2017, 123, p 68–74

    Article  Google Scholar 

  16. Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X.M. Chen, and M.S. Chen, Study of Dynamic Recrystallization in a Ni-Based Superalloy by Experiments and Cellular Automaton Model, Mater. Sci. Eng. A, 2015, 626, p 432–440

    Article  Google Scholar 

  17. S. Latha, M. Mathew, P. Parameswaran, M. Nandagopal, and S. Mannan, Effect of Titanium on the Creep Deformation Behaviour of 14Cr-15Ni-Ti Stainless Steel, J. Nucl. Mater., 2011, 409(3), p 214–220

    Article  Google Scholar 

  18. D. Samantaray, S. Mandal, and A. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802

    Article  Google Scholar 

  19. M. Vaziri, M. Mashayekhi, and M. Salimi, The Contribution of History in Plastic Behavior of Metals in Machining, J. Eng. Mater. Technol., 2012, 134(2), p 021007

    Article  Google Scholar 

  20. L.-E. Lindgren, K. Domkin, and S. Hansson, Dislocations, Vacancies and Solute Diffusion in Physical Based Plasticity Model for AISI, 316L, Mech. Mater., 2008, 40(11), p 907–919

    Article  Google Scholar 

  21. D. Samantaray, A. Patel, U. Borah, S. Albert, and A. Bhaduri, Constitutive Flow Behavior of IFAC-1 Austenitic Stainless Steel Depicting Strain Saturation Over a Wide Range of Strain Rates and Temperatures, Mater. Des., 2014, 56, p 565–571

    Article  Google Scholar 

  22. D. Samantaray, S. Mandal, V. Kumar, S. Albert, A. Bhaduri, and T. Jayakumar, Optimization of Processing Parameters Based on High Temperature Flow Behavior and Microstructural Evolution of a Nitrogen Enhanced 316L (N) Stainless Steel, Mater. Sci. Eng. A, 2012, 552, p 236–244

    Article  Google Scholar 

  23. H. Tripathy, S. Raju, A.K. Rai, G. Panneerselvam, and T. Jayakumar, Thermal Stability and Thermal Property Characterisation of Fe-14.4 Cr-15.4 Ni-2.4 Mo-2.36 Mn-0.25 Ti-1.02 Si-0.042 C-0.04 P-0.005 B (Mass%) Austenitic Stainless Steel (Alloy D9I), Nucl. Eng. Des., 2013, 255, p 86–96

    Article  Google Scholar 

  24. Q. Zhan, T. Suo, C. Wang, K. Xie, and Z. Tang, Temperature Sensitivity and Prediction of the Mechanical Behaviors of Ultrafine Grained Aluminum Under Uniaxial Compression, Acta Mech. Solida Sin., 2014, 27(4), p 373–382

    Article  Google Scholar 

  25. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113

    Article  Google Scholar 

  26. J. Mackenzie, The Distribution of Rotation Axes in a Random Aggregate of Cubic Crystals, Acta Metall., 1964, 12(2), p 223–225

    Article  Google Scholar 

  27. V. Randle, G. Rohrer, and Y. Hu, Five-Parameter Grain Boundary Analysis of a Titanium Alloy Before and After Low-Temperature Annealing, Scr. Mater., 2008, 58(3), p 183–186

    Article  Google Scholar 

  28. A. Dasgupta, S. Murugesan, S. Saroja, M. Vijayalakshmi, M. Luysberg, M. Veron, E. Rauch, and T. Jayakumar, Structure of Grains and Grain Boundaries in Cryo-Mechanically Processed Ti Alloy, J. Mater. Sci., 2013, 48(13), p 4592–4598

    Article  Google Scholar 

  29. S. Mandal, A. Bhaduri, and V.S. Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization During Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42(4), p 1062–1072

    Article  Google Scholar 

  30. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004

    Google Scholar 

  31. D. Field, L. Bradford, M. Nowell, and T. Lillo, The Role of Annealing Twins During Recrystallization of Cu, Acta Mater., 2007, 55(12), p 4233–4241

    Article  Google Scholar 

  32. Y. Wang, W. Shao, L. Zhen, L. Yang, and X. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 497(1), p 479–486

    Article  Google Scholar 

  33. Y. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43(6), p 243–258

    Article  Google Scholar 

  34. E. Poliak and J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation Of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136

    Article  Google Scholar 

  35. M. Mataya, M. Carr, and G. Krauss, Flow Localization and Shear Band Formation in a Precipitation Strengthened Austenitic Stainless Steel, Metall. Trans. A, 1982, 13(7), p 1263–1274

    Article  Google Scholar 

  36. D. Rittel, P. Landau, and A. Venkert, Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure, Phys. Rev. Lett., 2008, 101(16), p 165501

    Article  Google Scholar 

  37. S. Osovski, D. Rittel, P. Landau, and A. Venkert, Microstructural Effects on Adiabatic Shear Band Formation, Scr. Mater., 2012, 66(1), p 9–12

    Article  Google Scholar 

  38. T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, and S. Suwas, Softening and Dynamic Recrystallization in Magnesium Single Crystals During C-Axis Compression, Acta Mater., 2012, 60(2), p 537–545

    Article  Google Scholar 

  39. D. Rittel and Z. Wang, Thermo-Mechanical Aspects of Adiabatic Shear Failure of AM50 and Ti6Al4 V Alloys, Mech. Mater., 2008, 40(8), p 629–635

    Article  Google Scholar 

  40. G. Gottstein and L. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed., CRC Press, Boca Raton, 1999

    Google Scholar 

  41. D. Molodov, G. Gottstein, F. Heringhaus, and L. Shvindlerman, Motion of Planar Grain Boundaries in Bismuthbicrystals Driven by a Magnetic Field, Scr. Mater., 1997, 37(8), p 1207–1213

    Article  Google Scholar 

  42. S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the UGC-DAE-CSR for providing their experimental facilities for this work. Authors would also like to thank Mr. Raghavendra KG, SRF, IGCAR for invaluable help in specimen preparation for EBSD studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Samantaray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aashranth, B., Samantaray, D., Kumar, S. et al. Flow Softening Index for Assessment of Dynamic Recrystallization in an Austenitic Stainless Steel. J. of Materi Eng and Perform 26, 3531–3547 (2017). https://doi.org/10.1007/s11665-017-2757-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2757-9

Keywords

Navigation