Skip to main content
Log in

Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a “site-blocking” effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.A. Aal and M.S. Aly, Electroless Ni-Cu-P Plating Onto Open Cell Stainless Steel Foam, Appl. Surf. Sci., 2009, 255, p 6652–6655

    Article  Google Scholar 

  2. J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal Foams, Prog. Mater Sci., 2001, 46, p 559–632

    Article  Google Scholar 

  3. J. Nowacki and K. Moraniec, Evaluation of Methods of Soldering AlSi and AlSi-SiC Particle Composite Al Foams, J. Mater. Eng. Perform., 2015, 24, p 426–433

    Article  Google Scholar 

  4. I. Unver, H.O. Gulsoy, and B. Aydemir, Ni-625 Superalloy Foam Processed by Powder Space-Holder Technique, J. Mater. Eng. Perform., 2013, 22, p 3735–3741

    Article  Google Scholar 

  5. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Oxford, 2000, p 195

    Google Scholar 

  6. O. Smorygo, V. Mikutski, A. Leonov, A. Marukovich, and Y. Vialiuha, Nickel Foams with Oxidation-Resistant Coatings Formed by Combustion Synthesis, Scripta Mater., 2008, 58, p 910–913

    Article  Google Scholar 

  7. Y. Boonyongmaneerat and D.C. Dunand, Ni-Mo-Cr Foams Processed by Casting Replication of Sodium Aluminate Preforms, Adv. Eng. Mater., 2008, 10, p 379–383

    Article  Google Scholar 

  8. D. Hochauer, C. Mitterer, M. Penoy, C. Michotte, H.P. Martinz, and M. Kathrein, Thermal Stability of Doped CVD K-Al2O3 Coatings, Surf. Coat. Technol., 2010, 204, p 3713–3722

    Article  Google Scholar 

  9. H.Y. Yue, E.J. Guo, W.D. Fei, Z.M. Yu, and L.P. Wang, Effects of Cr2O3 Coating of Whiskers on the Tensile Properties and Thermal Stability of Aluminum Borate Whiskers Reinforced 2024Al Composite, Mater. Sci. Eng., A, 2012, 533, p 33–37

    Article  Google Scholar 

  10. A.M. Hodge and D.C. Dunand, Synthesis of Nickel-Aluminide Foams by Pack-Aluminization of Nickel Foams, Intermetallics, 2001, 9, p 581–589

    Article  Google Scholar 

  11. Y. Boonyongmaneerat, C.A. Schuh, and D.C. Dunand, Mechanical Properties of Reticulated Aluminum Foams with Electrodeposited Ni-W Coatings, Scripta Mater., 2008, 59, p 336–339

    Article  Google Scholar 

  12. H. Choe and D.C. Dunand, Mechanical Properties of Oxidation-Resistant Ni-Cr Foams, Mater. Sci. Eng., A, 2004, 384, p 184–193

    Article  Google Scholar 

  13. R. Cueff, H. Buscail, E. Caudron, F. Riffard, C. Issartel, and S.E.I. Messki, Effect of Reactive Element Oxide Coating on the High Temperature Oxidation Behaviour of FeCrAl Alloys, Appl. Surf. Sci., 2004, 229, p 233–241

    Article  Google Scholar 

  14. Y. Wang and W. Chen, Microstructures, Properties and High-Temperature Carburization Resistances of HVOF Thermal Sprayed NiAl Intermetallic-Based Alloy Coatings, Surf. Coat. Technol., 2004, 183, p 18–28

    Article  Google Scholar 

  15. S. Chevalier and J.P. Larpin, Influence of Reactive Element Oxide Coatings on the High Temperature Cyclic Oxidation of Chromia-Forming Steels, Mater. Sci. Eng., A, 2003, 363, p 116–125

    Article  Google Scholar 

  16. Q. Pang, G.H. Wu, Z.Y. Xiu, L.T. Jiang, and D.L. Sun, Microstructure, Oxidation Resistance and High-Temperature Strength of a New Class of 3D Open-Cell Nickel-Based Foams, Mater. Charact., 2012, 70, p 125–136

    Article  Google Scholar 

  17. M.S. Aly, Tensile Properties Of Open-Cell Nickel Foams, Mater. Des., 2010, 31, p 2237–2240

    Article  Google Scholar 

  18. N.M. Lin, F.Q. Xie, T. Zhong, X.Q. Wu, and W. Tian, Influence of Adding Various Rare Earths on Microstructures and Corrosion Resistance of Chromizing Coatings Prepared Via Pack Cementation on P110 Steel, J. Rare Earths, 2010, 28, p 301–304

    Article  Google Scholar 

  19. H. Zhang, X. Peng, J. Zhao, and F. Wang, Prior Electrodeposition of Nanocrystalline Ni-CeO2 Film Fabricating an Oxidation-Resistant Chromized Coating on Carbon Steels, Electrochem. Solid-State Lett., 2007, 10, p 12–15

    Article  Google Scholar 

  20. L. Zhu, X. Peng, J. Yan, and F. Wang, Oxidation of a Novel Chromium Coating with CeO2 Dispersions, Oxid. Met., 2004, 62, p 411–426

    Article  Google Scholar 

  21. N.C. Huang and S.J. Hu, Surface Modification by REE and Its Applications, National Defense Industry Press, Beijing, 2007, p 8–77

    Google Scholar 

  22. J. Yan, X. Peng, and F. Wang, Oxidation of a Novel CeO2-Dispersion-Strengthened Chromium Coating in Simulated Coal-Combustion Gases, Mater. Sci. Eng., A, 2006, 426, p 266–273

    Article  Google Scholar 

  23. B.A. Pint, Experimental Observations in Support of the Dynamic-Segregation Theory to Explain the Reactive-Element Effect, Oxid. Met., 1996, 45, p 1–37

    Article  Google Scholar 

  24. A. Barty, S. Marchesini, H.N. Chapman, C. Cui, M.R. Howells, and D.A. Shapiro, Three-Dimensional Coherent x-Ray Diffraction Imaging of a Ceramic Nanofoam: Determination of Structural Deformation Mechanisms, Phys. Rev. Lett., 2008, 101, p 1–4

    Article  Google Scholar 

  25. J.L. Murray, ASM Handbook-Alloy Phase Diagrams, Vol 3, ASM International, Materials Park, 1990, p 312–322

    Google Scholar 

  26. R. Bianco, R.A. Rapp, and N.S. Jacobson, Volatile Species in Halide-Activated Diffusion Coating Packs, Oxid. Met., 1992, 38, p 33–43

    Article  Google Scholar 

  27. A. Chyrkin, S.L. Schulze, J. Pirón-Abellán, W. Bleck, L. Singheiser, and W.J. Quadakkers, Oxidation Limited Lifetime of Ni-Base Metal Foams in the Temperature Range 700-900°C, Adv. Eng. Mater., 2010, 9, p 873–883

    Article  Google Scholar 

  28. Q. Pang, Z.Y. Xiu, G.H. Wu, L.T. Jiang, D.L. Sun, and Z.L. Hu, Synthesis and Properties Of Open-Cell Ni-Cr-Fe-Al Alloy Foams by Pack Co-Deposition Process, J. Mater. Process. Technol., 2012, 212, p 2219–2227

    Article  Google Scholar 

  29. Q. Pang, G.H. Wu, D.L. Sun, Z.Y. Xiu, and L.T. Jiang, A Dual-Layer Ce-Cr/Al Oxidation Resistant Coating for 3D Open-Cell Nickel Based Foams by a Two-Step Pack Cementation, Mater. Sci. Eng., A, 2013, 568, p 228–238

    Article  Google Scholar 

  30. T.P. Li, High Temperature Oxidation and Thermal Corrosion of Metal, Chemical Industry Press, Beijing, 2003, p 33–215

    Google Scholar 

  31. P.J. Blau, T.M. Brummett, and B.A. Pint, Effects of Prior Surface Damage on High-Temperature Oxidation of Fe-, Ni-, and Co-Based Alloys, Wear, 2009, 267, p 380–386

    Article  Google Scholar 

  32. Y.B. Zhou, H. Chen, and H. Zhang, Preparation and Oxidation of an Y2O3-Dispersed Chromizing Coating by Pack Cementation at 800°C, Vacuum, 2008, 82, p 748–753

    Article  Google Scholar 

  33. Y.J. Liang and Y.C. Che, Thermodynamic Data Handbook of Inorganic Substances, Northeastern University Press, Shengyang, 1994

    Google Scholar 

  34. X. Song, L. Wang, and Y. Liu, Effects of Temperature and Rare Earth Content on Oxidation Resistance of Ni-Based Superalloy, Prog. Nat. Sci., 2011, 21, p 227–235

    Article  Google Scholar 

  35. N.B. Pilling and R.E. Bedworth, The Oxidation of Metals at High Temperatures, J. Inst. Metals, 1923, 29, p 529–582

    Google Scholar 

Download references

Acknowledgment

This study is financially supported by National Natural Science Foundation of China (Grant No. 51501133) and the Universities of Hubei Province outstanding young scientific and technological innovation team plans (Project No.T201629). The authors would like to take this opportunity to express their sincere appreciation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Q., Hu, Z.L. & Wu, G.H. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation. J. of Materi Eng and Perform 25, 5189–5200 (2016). https://doi.org/10.1007/s11665-016-2362-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2362-3

Keywords

Navigation