Skip to main content
Log in

Influence of Cu, Zn and Si alloying elements on Al alloy foams produced using Mg blowing agent

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The main focus of the present study is to compare the effect of different alloying elements on Al–Mg alloy foams. Al–Mg15–X10 (X = Cu, Zn and Si) alloy foams were produced via powder metallurgy route by using Mg as a blowing agent. Macro- and microstructural characterisations of the foams were performed using X-ray tomography, X-ray diffraction and scanning electron microscope. Corrosion studies such as weight loss measurement, hydrogen evolution method and potentiodynamic test were conducted. Mechanical properties were evaluated by subjecting the samples to quasi-static compression and microhardness tests. All the alloy foams showed a comparable structure. The Cu-containing foams exhibited the highest strength, while the Zn-containing foams showed the highest expansion. However, the other properties such as brittleness, elastic modulus and burning nature were found to be better for the Si-containing foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632. https://doi.org/10.1016/S0079-6425(00)00002-5

    Article  CAS  Google Scholar 

  2. Koizumi T, Kido K, Kita K, Mikado K, Gnyloskurenko S, Nakamura T (2011) Foaming agents for powder metallurgy production of aluminum foam. Mater Trans 52:728–733. https://doi.org/10.2320/matertrans.M2010401

    Article  CAS  Google Scholar 

  3. Wiehler H, Körner C, Singer RF (2008) High pressure integral foam moulding of aluminium: process technology. Adv Eng Mater 10:171–178. https://doi.org/10.1002/adem.200700267

    Article  CAS  Google Scholar 

  4. Banhart J, Vinod-Kumar GS, Kamm PH, Neu TR, García-Moreno F (2016) Light-metal foams: some recent developments. Ciencia Tecnologia dos Materiais 28:1–4. https://doi.org/10.1016/j.ctmat.2016.06.002

    Article  Google Scholar 

  5. Kennedy AR (2002) The effect of TiH2 heat treatment on gas release and foaming in Al–TiH2 preforms. Scr Mater 47:763–767. https://doi.org/10.1016/S1359-6462(02)00281-6

    Article  CAS  Google Scholar 

  6. Matijasevic-Lux B, Banhart J, Fiechter S, Gorke O, Wanderka N (2006) Modification of titanium hydride for improved aluminium foam manufacture. Acta Mater 54:1887–1900. https://doi.org/10.1016/j.actamat.2005.12.012

    Article  CAS  Google Scholar 

  7. Muduli B, Ramesh T, HariKumar KC, Rajalakshmi N, Mukherjee M (2019) Customised heat treatment of TiH2 for the foaming of aluminium alloys. Materialia 8:100431. https://doi.org/10.1016/j.mtla.2019.100431

    Article  CAS  Google Scholar 

  8. Lázaro J, Solórzano E, Rodríguez-Pérez MA, Ramer O, García-Moreno F, Banhart J (2014) Heat treatment of aluminium foam precursors: effects on foam expansion and final cellular structure. Procedia Mater Sci 4:287–292. https://doi.org/10.1016/j.mspro.2014.07.559

    Article  CAS  Google Scholar 

  9. Proa-Flores PM, Drew RAL (2008) Production of aluminum foams with Ni-coated TiH2 powder. Adv Eng Mater 10:830–834. https://doi.org/10.1002/adem.200800135

    Article  CAS  Google Scholar 

  10. Mukherjee M, Garcia-Moreno F, Banhart J (2010) Defect generation during solidification of aluminium foams. Scr Mater 63:235–238. https://doi.org/10.1016/j.scriptamat.2010.03.064

    Article  CAS  Google Scholar 

  11. Vojtìch D, Knotek V (2012) Magnesium alloys for hydrogen storage. Mater Tehnol 46:247–250

    Google Scholar 

  12. Jiménez C, Gracia Moreno F, Banhart J, Zehl G (2008) Effect of relative humidity on pressure-induced foaming (PIF) of aluminium-based precursors. In: Proceedings of 5th international conference on porous metals and metallic foams, pp 59–62

  13. Tuck CDS (1981) Evidence for the formation of magnesium hydride on the grain boundaries Al–Mg and Al–Zn–Mg alloys during their exposure to water vapour. In: Bernstein IM, Thomson AW (eds) Hydrogen effects in metals. The Metallurgical Society of AIME, Warrendale, pp 503–511

    Google Scholar 

  14. Mukherjee M, Garcia-Moreno F, Jiménez C, Banhart J (2010) Al and Zn foams blown by an intrinsic gas source. Adv Eng Mater 12:472–477. https://doi.org/10.1002/adem.201000017

    Article  CAS  Google Scholar 

  15. Garcia-Moreno F, Mukherjee M, Jiménez C, Rack A, Banhart J (2011) Metal foaming investigated by X-ray radioscopy. Metals (Basel) 2:10–21. https://doi.org/10.3390/met2010010

    Article  CAS  Google Scholar 

  16. Jiménez C, Paeplow M, Kamm PH, Neu TR, Klaus M, Wagener G, Banhart J, Genzel C, Garcia-Moreno F (2018) Simultaneous X-ray radioscopy/tomography and energy-dispersive diffraction applied to liquid aluminium alloy foams. J Synchrotron Radiat 25:1790–1796. https://doi.org/10.1107/S1600577518011657

    Article  Google Scholar 

  17. García-Moreno F, Kamm PH, Neu TR, Bülk F, Mokso R, Schlepütz CM, Stampanoni M, Banhart J (2019) Using X-ray tomoscopy to explore the dynamics of foaming metal. Nat Commun 10:1–9. https://doi.org/10.1038/s41467-019-11521-1

    Article  CAS  Google Scholar 

  18. Campana F, Pilone D (2009) Effect of heat treatments on the mechanical behaviour of aluminium alloy foams. Scr Mater 60:679–682. https://doi.org/10.1016/j.scriptamat.2008.12.045

    Article  CAS  Google Scholar 

  19. Lehmhus D, Banhart J (2003) Properties of heat-treated aluminium foams. Mater Sci Eng A 349:98–110. https://doi.org/10.1016/S0921-5093(02)00582-8

    Article  Google Scholar 

  20. Lehmhus D, Banhart J, Rodriguez-Perez MA (2002) Adaptation of aluminium foam properties by means of precipitation hardening. Mater Sci Technol 18:474–479. https://doi.org/10.1179/026708302225002182

    Article  CAS  Google Scholar 

  21. International Standard I (2011) Mechanical testing of metals. Ductility testing. Compression test for porous and cellular metals. Int Stand ISO 13314

  22. Song G, Atrens A, Suohn D (2001) An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In: Hryn JN (ed) Magnesium technology. Springer, Berlin, pp 255–262

    Google Scholar 

  23. Mukai T, Kanahashi H, Kohzu H, Kanahashi H, Kohzu H, Tanabe S, Higashi K (1999) Enhancement of energy absorption in a closed-cell aluminum by the modification of cellular structures. Scr Mater 41:1055–1060. https://doi.org/10.1016/S13596462(99)00255-9

    Article  Google Scholar 

  24. Ezuber H, El-Houd A, El-Shawesh F (2008) A study on the corrosion behavior of aluminum alloys in seawater. Mater Des 29:801–805. https://doi.org/10.1016/j.matdes.2007.01.021

    Article  CAS  Google Scholar 

  25. McCafferty E (2005) Validation of corrosion rates measured by the Tafel extrapolation method. Corros Sci 47:3202–3215. https://doi.org/10.1016/j.corsci.2005.05.046

    Article  CAS  Google Scholar 

  26. Shi Z, Liu M, Atrens A (2010) Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros Sci 52:579–588. https://doi.org/10.1016/j.corsci.2009.10.016

    Article  CAS  Google Scholar 

  27. Floyd FL, Tatti S, Provder T (2007) Using DC electrochemical techniques to assess the relative corrosiveness of water-based coatings and their ingredients. J Coat Technol Res 4:111–129. https://doi.org/10.1007/s11998-007-9012-5

    Article  CAS  Google Scholar 

  28. Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HN (2000) Metal foams: a design guide. Butterworth-Heinemann, Oxford, p 46

    Google Scholar 

  29. Raj RE, Daniel BSS (2009) Structural and compressive property correlation of closed-cell aluminum foam. J Alloys Compd 467:550–556. https://doi.org/10.1016/j.jallcom.2007.12.040

    Article  CAS  Google Scholar 

  30. Baumeister J, Banhart J, Weber M (1997) Aluminium foams for transport industry. Mater Des 18:217–220. https://doi.org/10.1016/s0261-3069(97)00050-2

    Article  CAS  Google Scholar 

  31. Szklarska-Smialowska Z (1999) Pitting corrosion of aluminum. Corros Sci 41:1743–1767. https://doi.org/10.1016/S0010-938X(99)00012-8

    Article  CAS  Google Scholar 

  32. Birbilis N, Buchheit RG (2005) Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion. J Electrochem Soc 152:140–151. https://doi.org/10.1149/1.1869984

    Article  CAS  Google Scholar 

  33. Li J, Dang J (2017) A summary of corrosion properties of Al-rich solid solution and secondary phase particles in al alloys. Metals (Basel) 7:3–5. https://doi.org/10.3390/met7030084

    Article  CAS  Google Scholar 

  34. Bethencourt M, Botana FJ, Cano MJ, Marcos M, Sánchez-Amaya JM, González-Rovira L (2009) Behaviour of the alloy AA2017 in aqueous solutions of NaCl Part I: corrosion mechanisms. Corros Sci 51:518–524. https://doi.org/10.1016/j.corsci.2008.12.027

    Article  CAS  Google Scholar 

  35. Rodríguez-Diaz RA, Uruchurtu-chavarín J, Cotero-Villegas AM, Valdez S, Juárez-Islas JA (2015) Corrosion behavior of AlMgSi alloy in aqueous saline solution. Int J Electrochem Sci 10:1792–1808

    Google Scholar 

  36. Wang CC, Chou YC, Yen CY (2012) Hydrogen generation from aluminum and aluminum alloys powder. Procedia Eng 36:105–113. https://doi.org/10.1016/j.proeng.2012.03.017

    Article  CAS  Google Scholar 

  37. Belitskus D (1970) Reaction of aluminum with sodium hydroxide solution as a source of hydrogen. J Electrochem Soc 117:1097–1099. https://doi.org/10.1149/1.2407730

    Article  Google Scholar 

  38. Song G, Atrens A (2003) Understanding magnesium corrosion. A framework for improved alloy performance. Adv Eng Mater 5:837–858. https://doi.org/10.1002/adem.200310405

    Article  CAS  Google Scholar 

  39. Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8:925–936. https://doi.org/10.1016/j.actbio.2011.11.014

    Article  CAS  Google Scholar 

  40. Li JF, Ziqiao Z, Na J, Chengyu T (2005) Localized corrosion mechanism of 2×××-series Al alloy containing S(Al2CuMg) and θ′(Al2Cu) precipitates in 4.0% NaCl solution at pH 6.1. Mater Chem Phys 91:325–329. https://doi.org/10.1016/j.matchemphys.2004.11.034

    Article  CAS  Google Scholar 

  41. Yasakau KA, Zheludkevich ML, Ferreira MGS (2018) Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection. In: Mitra R (ed) Intermetallic matrix composites. Elsevier, Amsterdam, pp 425–462. https://doi.org/10.1016/B978-0-85709-346-2.00015-7

    Chapter  Google Scholar 

  42. Vuelvas S, Valdez S, Gonzalez-Rodriguez JG (2012) Effect of Mg and Sn addition on the corrosion behavior of an Al–Mn alloy in 0.5M H2SO4. Int J Electrochem Sci 7:4171–4181

    CAS  Google Scholar 

  43. Zeng FL, Wei ZL, Li JF, Li CX, Tan X, Zhang Z, Zheng ZQ (2011) Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans Nonferrous Met Soc China (Engl Ed) 21:2559–2567. https://doi.org/10.1016/S1003-6326(11)61092-3

    Article  CAS  Google Scholar 

  44. Abdel Rehim SS, Hassan HH, Amin MA (2004) Chronoamperometric studies of pitting corrosion of Al and (Al–Si) alloys by halide ions in neutral sulphate solutions. Corros Sci 46:1921–1938. https://doi.org/10.1016/j.corsci.2003.10.016

    Article  CAS  Google Scholar 

  45. Suter T, Eckermann F, Suter T, Uggowitzer PJ, Afseth A, Schmutz P (2008) The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochim Acta 54:844–855. https://doi.org/10.1016/j.electacta.2008.05.078

    Article  CAS  Google Scholar 

  46. Fassell WM, Gulbransen LB, Lewis JR, Hamilton JH (1951) Ignition temperatures of magnesium and magnesium alloys. JOM 3:522–528. https://doi.org/10.1007/bf03397342

    Article  CAS  Google Scholar 

  47. Sudharsan N, Rajasekaran T, Vinod-Kumar GS (2018) Optimizing the hot compaction parameters of Al–Mg–Cu foams processed through elemental powder route. In: IOP conference series: materials science and engineering. https://doi.org/10.1088/1757-899X/402/1/012202

  48. Zayan MH, Jamjoom OM, Razikt NA (1990) High-temperature oxidation of Al–Mg alloys. Oxid Met 34:323–333. https://doi.org/10.1007/BF00665021

    Article  CAS  Google Scholar 

  49. Gaskell DR (2003) Introduction to the thermodynamics of materials, 4th edn. Taylor and Francis, London, pp 412–421

    Google Scholar 

  50. Sundman B, Jansson B, Andersson JO (1985) The Thermo-Calc databank system. Calphad 9:153–190. https://doi.org/10.1016/0364-5916(85)90021-5

    Article  CAS  Google Scholar 

  51. TCS aluminium-based alloy thermodynamic databases TCAL, Version 5 (2018) Thermo-Calc Software AB, Sweden

  52. Dumitraschkewitz P, Gerstl SSA, Stephenson LT, Uggowitzer PJ, Pogatscher S (2018) Clustering in age-hardenable aluminum alloys. Adv Eng Mater 20:1800255. https://doi.org/10.1002/adem.201800255

    Article  CAS  Google Scholar 

  53. Mukherjee M, García-Moreno F, Jiménez C et al (2017) Microporosity in aluminium foams Rack A and Banhart J. Acta Mater 131:156–168. https://doi.org/10.1016/j.actamat.2017.03.039

    Article  CAS  Google Scholar 

  54. Simone AE, Gibson LJ (1998) Aluminum foams produced by liquid-state processes. Acta Mater 46:3109–3123. https://doi.org/10.1016/S1359-6454(98)00017-2

    Article  CAS  Google Scholar 

  55. Kubelka P, Matz AM, Jost N (2019) Compression behavior of low-pressure casted AMC syntactic foams with high porosity. In: Dukhan N (ed) 11th International conference on porous metals and metallic foams. Springer, Berlin, pp 115–126

  56. Zhang J, Huang YN, Mao C, Peng P (2012) Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: first-principles calculations. Solid State Commun 152:2100–2104. https://doi.org/10.1016/j.ssc.2012.09.003

    Article  CAS  Google Scholar 

  57. Sugimura Y, Meyer J, He MY, Bart-Smith H, Grenstedt J, Evans AG (1997) On the mechanical performance of closed cell Al alloy foams. Acta Mater 45:5245–5259. https://doi.org/10.1016/S1359-6454(97)00148-1

    Article  CAS  Google Scholar 

  58. Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties, 2nd edn. MIT Press, Cambridge, p 215

    Google Scholar 

  59. Beals JT, Thompson MS (1997) Density gradient effects on aluminium foam compression behaviour. J Mater Sci 32:3595–3600. https://doi.org/10.1023/A:1018670111305

    Article  CAS  Google Scholar 

  60. Andrews EW, Gioux G, Onck P, Gibson LJ (2001) Size effects in ductile cellular solids. Part II: experimental results. Int J Mech Sci 43:701–713

    Article  Google Scholar 

  61. Andrews E, Sanders W, Gibson LJ (1999) Compressive and tensile behaviour of aluminum foams. Mater Sci Eng A 270:113–124. https://doi.org/10.1016/S0921-5093(99)00170-7

    Article  Google Scholar 

  62. Bastawros A-F, Bart-Smith H, Evans AG (2000) Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J Mech Phys Solids 48:301–322. https://doi.org/10.1016/S0022-5096(99)00035-6

    Article  CAS  Google Scholar 

  63. Markaki AE, Clyne TW (2001) The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams. Acta Mater 49:1677–1686. https://doi.org/10.1016/S1359-6454(01)00072-6

    Article  CAS  Google Scholar 

  64. Mukherjee M, Ramamurty U, Garcia-Moreno F, Banhart J (2010) The effect of cooling rate on the structure and properties of closed-cell aluminium foams. Acta Mater 58:5031–5042. https://doi.org/10.1016/j.actamat.2010.05.039

    Article  CAS  Google Scholar 

  65. Dannemann KA, Lankford J (2000) High strain rate compression of closed-cell aluminum foams. Mater Sci Eng A 293:157–164. https://doi.org/10.1016/S0921-5093(00)01219-3

    Article  Google Scholar 

  66. Banhart J, Brinkers W (1999) Fatigue behavior of aluminum foams. J Mater Sci Lett 18:617–619. https://doi.org/10.1023/A:1006646901741

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Arul Kumar Ganapathi and Kallem Shekar Reddy for their support during corrosion tests and thankful to Shaik Jubeda Begum for helping in image analysis. The first and the last authors would like to thank the Naval Research Board of Defence Research and Development Organization, India, for providing partial funding for this study (Project Number NRB-371/MAT/15-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Georgy.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgy, K., Neelakantan, L., Kumar, K.C.H. et al. Influence of Cu, Zn and Si alloying elements on Al alloy foams produced using Mg blowing agent. J Mater Sci 56, 2612–2630 (2021). https://doi.org/10.1007/s10853-020-05381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05381-0

Navigation