Skip to main content
Log in

The Effect of TaC Reinforcement on the Oxidation Resistance of CNTs/SiC CMCs

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study focuses on a two-stage spark plasma sintering (SPS) of TaC and/or carbon nanotubes (CNTs)-reinforced SiC ceramic matrix composites (CMCs). The oxidation mechanism of SiC-based CMCs with CNTs reinforcement as well as the TaC additives effect on the thermal oxidation resistance of the SiC-CNTs-TaC systems are investigated. The oxidation behavior up to 1500 °C is characterized in terms of mass changes, oxide layer formation, and thickness. The results showed that more disorder occurred in the CNT network with increased oxidation temperature. TaC additives exhibited an enhanced protective effect in increasing the oxidation temperature of CNTs from 460 to 550 °C, and this protective effect was effective at 1200 °C achieved by the crystalized Ta2O5 which grew with a preferred orientation giving rise to the phase separation in the glassy protective layer. Degraded oxidation resistance was found at 1500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.M.V. Bolivar, A. Antonini, S. Biamino et al., Oxidation Resistance of Multilayer SiC for Space Vehicle Thermal Protection Systems, Adv. Eng. Mater., 2010, 12, p 617–622

    Article  Google Scholar 

  2. M.-J. Pindera and A.D. Freed, The Effect of Matrix Microstructure on Thermal Induced Residual Stresses in SiC/Titanium Aluminide Composites, J. Eng. Mater. Technol., 1994, 116(2), p 215–221

    Article  Google Scholar 

  3. W. Yang, Z. Shi, H. Li et al., Improvement of Strength and Oxidation Resistance for SiC/Graphite Composites by SiC Coating, IOP Conf Ser: Mater. Sci. Eng., 2011, 18, p 1757–1899

    Google Scholar 

  4. X. Yao, H. Li, Y. Zhang et al., A SiC/ZrB2-SiC/SiC Oxidation Resistance Multilayer Coating for Carbon/Carbon Composites, Corros. Sci., 2012, 57, p 148–153

    Article  Google Scholar 

  5. V.V. Rudneva and G.V. Galevskii, Investigation of Thermal Oxidation Resistance of Nanopowders of Refractory Carbides and Borides, J. Non-Ferr. Mater., 2007, 48, p 143–147

    Google Scholar 

  6. L.U.J.T. Ogbuji and E.J. Opila, A Comparison of the Oxidation Kinetics of SiC and Si3N4, J. Elctrochem. Soc., 1995, 142(3), p 925–930

    Article  Google Scholar 

  7. N.S. Jacobson, Corrosion of Silicon-Based Ceramics in Combustion Environments, J. Am. Ceram. Soc., 1993, 76(1), p 3–28

    Article  Google Scholar 

  8. M. Balat, R. Berjoan, G. Pichelin et al., High-Temperature Oxidation of Sintered Silicon Carbide Under Pure CO2 at Low Pressure: Active-Passive Transition, Appl. Surf. Sci., 1998, 133, p 115–123

    Article  Google Scholar 

  9. G.C. Nayak, R. Rajasekar, and C.K. Das, Effect of SiC coated MWCNTs on the thermal and mechanical properties of PEI/LCP blend, Compos. Part A: Appl. Sci. Manuf. , 2010, 41, p 1662–1667

    Article  Google Scholar 

  10. N. Song, H. Liu, Y. Yuan et al., Fabrication and Corrosion Resistance of SiC-Coated Multi-Walled Carbon Nanotubes, J. Mater. Sci. Technol., 2013, 29, p 1146–1150

    Article  Google Scholar 

  11. Z. Gu, Y. Yang, K. Li et al., Aligned Carbon Nanotube-Reinforced Silicon Carbide Composites Produced by Chemical Vapor Infiltration, Carbon, 2011, 49, p 2475–2482

    Article  Google Scholar 

  12. P. Zeman, J. Musil, and R. Daniel, High-Temperature Oxidation Resistance of Ta-Si-N Films with a High Si Content, Surf. Coat. Technol., 2006, 200, p 4091–4096

    Article  Google Scholar 

  13. E.J. Opila and M.C. Halbig, Oxidation of ZrB2-SiC, Ceram. Eng. Sci. Proc., 2001, 22, p 221–228

    Article  Google Scholar 

  14. E.J. Opila, S. Levine, and J. Lorincz, Oxidation of ZrB2- and HfB2-Based Ultra-High Temperature Ceramic: Effect of Ta Additions, J. Mater. Sci., 2004, 39, p 5969–5977

    Article  Google Scholar 

  15. A. Nieto, A. Kumar, D. Lahiri, Arvind et al., Oxidation Behavior of Graphene Nanoplatelet Reinforced Tantalum Carbide Composites in High Temperature Plasma Flow, Carbon, 2014, 67, p 398–408

    Article  Google Scholar 

  16. Y. Wang, B. Ma, L. Li et al., Oxidation Behavior of ZrB2-SiC-TaC Ceramics, J. Am. Ceram. Soc., 2012, 95, p 374–378

    Article  Google Scholar 

  17. F. Peng and R.F. Speyer, Oxidation Resistance of Fully Dense ZrB2 with SiC, TaB 2, and TaSi2 Additives, J. Am. Ceram. Soc., 2008, 91, p 1489–1494

    Article  Google Scholar 

  18. C.X. Liu and J.W. Choi, Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations, Nanomaterial, 2012, 2, p 329–347

    Article  Google Scholar 

  19. G.T. Caneba, C. Dutta, V. Agrawal et al., Novel ultrasonic desertion of carbon nanotube, J. Miner Mater. Charact. Eng., 2010, 9, p 165–181

    Google Scholar 

  20. D. Jain, K.M. Reddy, A. Mukhopadhyay, and B. Basu, Achieving Uniform Microstructure and Superior Mechanical Properties in Ultrafine Grained TiB2-TiSi2 Composites Using Innovative Multi Stage Spark Plasma Sintering, Mater. Sci. Eng., A, 2010, 528, p 200–207

    Article  Google Scholar 

  21. K.M. Reddy, N. Kumar, and B. Basu, Innovative Multi-Stage Spark Plasma Sintering to Obtain Strong and Tough Ultrafine-Grained Ceramics, Scr. Mater., 2010, 62, p 435–438

    Article  Google Scholar 

  22. S. Prochazka, Proceedings of the Conference on Ceramics for High Performance Applications, Hyanuis, MA, 1973, J.J. Burke, A.E. Gorum, R.M. Katz, Eds., Brook Hill Publishing Co, 1975, p 7-13

  23. W. Guo, J. Vleugels, G. Zhang et al., Effect of Heating Rate on Densification, Microstructure and Strength of Spark Plasma Sintered ZrB2-based Ceramics, Scr. Mater., 2010, 62, p 802–805

    Article  Google Scholar 

  24. Q. Xie and S.N. Wosu, Spark Plasma Sintering of TaC and/or CNTs Reinforced SiC CMCs, J. Compos. Mater., 2015, doi:10.1177/0021998315580832

    Google Scholar 

  25. D. Eder, Carbon Nanotube-Inorganic Hybrids, Chem. Rev., 2010, 110, p 1348–1385

    Article  Google Scholar 

  26. S. Aksel and D. Eder, Catalytic Effect of Metal Oxides on the Oxidation Resistance in Carbon Nanotube-Inorganic Hybrids, J. Am. Ceram. Soc., 2010, 20, p 9149–9154

    Google Scholar 

  27. K. Li, Y. Yang, Z. Gu et al., Approaching Carbon Nanotube Reinforcing Limit in B4C Matric Composites Produced by Chemical Vapor Infiltration, Adv. Eng. Mater., 2014, 16, p 161–166

    Article  Google Scholar 

  28. P. Deshmukh, J. Bhatt, D. Peshwe et al., Determination of Silica Activity Index and XRD, SEM and EDS Studies of Amorphous SiO2 Extracted from Rive Husk Ash, Trans. Indian Inst. Met., 2012, 65, p 63–70

    Article  Google Scholar 

  29. E.J. Opila, J. Smith, S.R. Levine et al., Oxidation of TaSi2-Containing ZrB2-SiC Ultra-High Temperature Materials, J. Open Aerosp. Eng., 2010, 3, p 41–51

    Article  Google Scholar 

  30. L. Bokobza and J. Zhang, Raman Spectroscopic Characterization of Multiwall Carbon Nanotubes and of Composites, Exp. Polym. Lett., 2012, 6, p 601–608

    Article  Google Scholar 

  31. M.S. Dresselhaus, A. Jorio, M. Hofmann et al., Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy, Nano Lett., 2010, 10, p 751–758

    Article  Google Scholar 

  32. S.R. Bakshi, V. Musaramthota, D.A. Virzi et al., Spark Plasma Sintered Tantalum Carbide-Carbon Nanotube Composite: Effect of Pressure, Carbon Nanotube Length and Dispersion Technique on Microstructure and Mechanical Properties, Mater. Sci. Eng., A, 2011, 528, p 2538–2547

    Article  Google Scholar 

  33. X. Wang, N.P. Padture, and H. Tanaka, Contact-Damage-Resistant Ceramic/Single-Wall Carbon Nanotubes and Ceramic/Graphite Composites, Nat. Mater., 2004, 3, p 539–544

    Article  Google Scholar 

  34. P.M. Ajayan, L.S. Schadler, C. Giannaris et al., Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness, Adv. Mater., 2000, 12, p 750–753

    Article  Google Scholar 

  35. E.L. Corral, H. Wang, J. Garay et al., Effect of Single-Walled Carbon Nanotubes on Thermal and Electrical Properties of Silicon Nitride Processed Using Spark Plasma Sintering, J. Eur. Ceram. Soc., 2011, 31, p 391–400

    Article  Google Scholar 

  36. F. Huang, K.T. Yue, P. Tan et al., Temperature Dependence of the Raman Spectra of Carbon Nanotubes, J. Appl. Phys., 1998, 84, p 4022–4024

    Article  Google Scholar 

  37. A.C. Ferrari and J. Robertson, Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Phys. Rev. B, 2000, 61, p 14095–14107

    Article  Google Scholar 

  38. K.N. Kudin, B. Ozbas, H.C. Schniepp et al., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Lett., 2008, 8, p 36–41

    Article  Google Scholar 

  39. J.M. Benoit, J.P. Buisson, O. Chauvet et al., Low-Frequency Raman Studies of Multiwalled Carbon Nanotubes: Experiments and Theory, Phys. Rev. B, 2002, 6666, p 073417

    Article  Google Scholar 

  40. D.J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, Amsterdam, 2008

    Google Scholar 

  41. N.S. Jacobson and D.L. Myers, Active Oxidation of SiC, Oxid. Met., 2011, 75, p 1–25

    Article  Google Scholar 

  42. G. Li, X. Xiong, and K. Huang, Ablation Mechanism of TaC Coating Fabricated by Chemical Vapor Deposition on Carbon-Carbon Composites, Trans. Nonferr. Met. Soc. China, 2009, 19, p 689–695

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoyun Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Wosu, S.N. The Effect of TaC Reinforcement on the Oxidation Resistance of CNTs/SiC CMCs. J. of Materi Eng and Perform 25, 874–883 (2016). https://doi.org/10.1007/s11665-016-1921-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1921-y

Keywords

Navigation