Skip to main content
Log in

Influence of Thermomechanical Control Process on the Evolution of Austenite Grain Size in a Low-Carbon Nb-Ti-Bearing Bainitic Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

On the basis of hot rolling practice, the effects of thermomechanical control process parameters on the evolution of austenite grain size before the deformation at non-recrystallization zone were investigated in detail. The inflections in the strain hardening rate versus true stress curves show that the dynamic recrystallization (DRX) has initiated for different deformation conditions studied in the present work. But the volume fractions of the equiaxed grains in the specimens which were immediately water quenched to room temperature after deformation are different from each other. Moreover, the main refinement mechanisms for different deformation conditions have been differentiated. It is interesting to note that the austenite grain size can be refined significantly with increasing the strain from 0.0 to 0.5 for different deformation temperatures. However, when the strain increases to 0.8, the austenite grain size cannot be further refined for the higher deformation temperature range, while the austenite grain size can be further refined for the lower deformation temperature range. In addition, the effect of strain rate on the austenite grain refinement is vigorous for the higher deformation temperatures. Moreover, the empirical equation to estimate the austenite grain size for different deformation parameters was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Beladi, P. Cizek, and P.D. Hodgson, New Insight into the Mechanism of Metadynamic Softening in Austenite, Acta Mater., 2011, 59(4), p 1482–1492

    Article  Google Scholar 

  2. B. Dutta and E.J. Palmiere, Effect of Prestrain and Deformation Temperature on the Recrystallization Behavior of Steels Microalloyed with Niobium, Metall. Mater. Trans. A, 2003, 34(6), p 1237–1247

    Article  Google Scholar 

  3. A.I. Fernández, P. Uranga, B. López, and J.M. Rodriguez-Ibabe, Dynamic Recrystallization Behavior Covering a Wide Austenite Grain Size Range in Nb and Nb-Ti Microalloyed Steels, Mater. Sci. Eng., A, 2003, 361(1–2), p 367–376

    Article  Google Scholar 

  4. C. Roucoules, S. Yue, and J.J. Jonas, Effect of Alloying Elements on Metadynamic Recrystallization in HSLA Steels, Metall. Mater. Trans. A, 1995, 26(1), p 181–190

    Article  Google Scholar 

  5. M. Gómez, L. Rancel, and S.F. Medina, Effects of Aluminium and Nitrogen on Static Recrystallization in V-Microalloyed Steels, Mater. Sci. Eng., A, 2009, 506(1–2), p 165–173

    Article  Google Scholar 

  6. D.Q. Bai, S. Yue, T. Maccagno, and J.J. Jonas, Static Recrystallization of Nb and Nb-B Steels Under Continuous Cooling Conditions, ISIJ Int., 1996, 36(8), p 1084–1093

    Article  Google Scholar 

  7. T.M. Maccagno, J.J. Jonas, and P.D. Hodgson, Spreadsheet Modelling of Grain Size Evolution During Rod Rolling, ISIJ Int., 1996, 36(6), p 720–728

    Article  Google Scholar 

  8. A. Kundu, C. Davis, and M. Strangwood, Modeling of Grain Size Distributions During Single Hit Deformation of a Nb-Containing Steel, Metall. Mater. Trans. A, 2010, 41(4), p 994–1002

    Article  Google Scholar 

  9. A. Kundu, C. Davis, and M. Strangwood, Grain Size Distributions After Single Hit Deformation of a Segregated, Commercial Nb-Containing Steel: Prediction and Experiment, Metall. Mater. Trans. A, 2011, 42(9), p 2794–2806

    Article  Google Scholar 

  10. K.H. Jung, H.W. Lee, and Y.T. Im, Numerical Prediction of Austenite Grain Size in a Bar Rolling Process Using an Evolution Model Based on a Hot Compression Test, Mater. Sci. Eng., A, 2009, 519(1–2), p 94–104

    Article  Google Scholar 

  11. Y.C. Lin and M.S. Chen, Study of Microstructural Evolution During Metadynamic Recrystallization in a Low-Alloy Steel, Mater. Sci. Eng., A, 2009, 501(1–2), p 229–234

    Article  Google Scholar 

  12. Y.C. Lin and M.S. Chen, Study of Microstructural Evolution During Static Recrystallization in a Low Alloy Steel, J. Mater. Sci., 2009, 44(3), p 835–842

    Article  Google Scholar 

  13. C.X. Yue, L.W. Zhang, S.L. Liao, and H.J. Gao, Kinetics Analysis of the Austenite Grain Growth in GCr15 Steel, J. Mater. Eng. Perform., 2010, 19(1), p 112–115

    Article  Google Scholar 

  14. S. Roy, D. Chakrabarti, and G.K. Dey, Austenite Grain Structures in Ti- and Nb-Containing High-Strength Low-Alloy Steel During Slab Reheating, Metall. Mater. Trans. A, 2013, 44(2), p 717–728

    Article  Google Scholar 

  15. K.A. Taylor, Solubility Products for Titanium-, Vanadium-, and Niobium-Carbide in Ferrite, Scr. Metall. Mater., 1995, 32(1), p 7–12

    Article  Google Scholar 

  16. K.J. Irvine, F.B. Pickering, and T. Gladman, Grain Refined C-Mn Steels, J. Iron Steel Inst., 1967, 205, p 161–182

    Google Scholar 

  17. K. Narita, Physical Chemistry of the Groups IVa (Ti, Zr), Va (V, Nb, Ta) and the Rare Earth Elements in Steel, Trans. ISIJ, 1975, 15, p 145–152

    Google Scholar 

  18. C. García de Andrés, M.J. Bartolomé, C. Capdevila, D. San Martín, F.G. Caballero, and V. López, Metallographic Techniques for the Determination of the Austenite Grain Size in Medium-Carbon Microalloyed Steels, Mater. Charact., 2001, 46(5), p 389–398

    Article  Google Scholar 

  19. S.J. Lee and Y.K. Lee, Prediction of Austenite Grain Growth During Austenitization of Low Alloy Steels, Mater. Des., 2008, 29(9), p 1840–1844

    Article  Google Scholar 

  20. M. Enomoto, C.L. White, and H.I. Aaronson, Evaluation of the Effects of Segregation on Austenite Grain Boundary Energy in Fe-C-X Alloys, Metall. Trans. A, 1988, 19(7), p 1807–1818

    Article  Google Scholar 

  21. J.K. Chen, R.A. Vandermeer, and W.T. Reynolds, Effects of Alloying Elements Upon Austenite Decomposition in Low-C Steels, Metall. Mater. Trans. A, 1994, 25(7), p 1367–1379

    Article  Google Scholar 

  22. H. Ohtsuka, G. Ghosh, and K. Nagai, Effects of Cu on Diffusional Transformation Behavior and Microstructure in Fe-Mn-Si-C Steels, ISIJ Int., 1997, 37(3), p 296–301

    Article  Google Scholar 

  23. M. Arribas, B. López, and J.M. Rodriguez-Ibabe, Additional Grain Refinement in Recrystallization Controlled Rolling of Ti-Microalloyed Steels Processed by Near-Net-Shape Casting Technology, Mater. Sci. Eng., A, 2008, 485(1–2), p 383–394

    Article  Google Scholar 

  24. J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, and G.D. Wang, Low-Carbon Bainite Steel with High Strength and Toughness Processed by Recrystallization Controlled Rolling and Ultra Fast Cooling, ISIJ Int., 2014, 54(12), p 292–2932

    Article  Google Scholar 

  25. E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136

    Article  Google Scholar 

  26. E.I. Poliak and J.J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., 2003, 43(5), p 684–691

    Article  Google Scholar 

  27. E.I. Poliak and J.J. Jonas, Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation, ISIJ Int., 2003, 43(5), p 692–700

    Article  Google Scholar 

  28. G.R. Stewart, J.J. Jonas, and F. Montheillet, Kinetics and Critical Conditions for the Initiation of Dynamic Recrystallization in 304 Stainless Steel, ISIJ Int., 2004, 44(9), p 1581–1589

    Article  Google Scholar 

  29. H.S. Zurob, Y. Brechet, and G. Purdy, A Model for the Competition of Precipitation and Recrystallization in Deformed Austenite, Acta Mater., 2001, 49(20), p 4183–4190

    Article  Google Scholar 

  30. T.H. Zhou, R.J. O’malley, and H.S. Zurbo, Study of Grain-Growth Kinetics in Delta-Ferrite and Austenite with Application to Thin-Slab Cast Direct-Rolling Microalloyed Steels, Metall. Mater. Trans. A, 2010, 41(8), p 2112–2120

    Article  Google Scholar 

  31. P. Uranga, A.I. Fernández, B. López, and J.M. Rodriguez-Ibabe, Transition Between Static and Metadynamic Recrystallization Kinetics in Coarse Nb Microalloyed Austenite, Mater. Sci. Eng., A, 2003, A345(1–2), p 319–327

    Article  Google Scholar 

  32. J.W. Bowden, F.H. Samuel, and J.J. Jonas, Effect of Interpass Time on Austenite Grain Refinement by Means of Dynamic Recrystallization of Austenite, Metall. Trans. A, 1991, 22(12), p 2947–2957

    Article  Google Scholar 

  33. A. Dehghan-manshadi, J.J. Jonas, P.D. Hodgson, and M.R. Barnett, Correlation Between the Deformation and Post Deformation Softening Behaviors in Hot Worked Austenite, ISIJ Int., 2008, 48(2), p 208–211

    Article  Google Scholar 

  34. Y.C. Lin, M.S. Chen, and J. Zhong, Study of Metadynamic Recrystallization Behaviors in a Low Alloy Steel, J. Mater. Process. Technol., 2009, 209(5), p 2477–2482

    Article  Google Scholar 

  35. S.H. Cho, K.B. Kang, and J.J. Jonas, The Dynamic, Static and Metadynamic Recrystallization of a Nb-Microalloyed Steel, ISIJ Int., 2001, 41(1), p 63–69

    Article  Google Scholar 

  36. F. Chen, Z.S. Cui, D.S. Sui, and B. Fu, Recrystallization of 30Cr2Ni4MoV Ultra-super-critical Rotor Steel During Hot Deformation. Part III: Metadynamic Recrystallization, Mater. Sci. Eng., A, 2012, 540, p 46–54

    Article  Google Scholar 

  37. P.D. Hodgson and R.K. Gibbs, A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels, ISIJ Int., 1992, 32(12), p 1329–1338

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Project funded by China Postdoctoral Science Foundation (2014M560217, 2015T80260) and Fundamental Research Funds for Central Universities (N120807001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Lv, My., Tang, S. et al. Influence of Thermomechanical Control Process on the Evolution of Austenite Grain Size in a Low-Carbon Nb-Ti-Bearing Bainitic Steel. J. of Materi Eng and Perform 24, 3852–3861 (2015). https://doi.org/10.1007/s11665-015-1700-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1700-1

Keywords

Navigation