Skip to main content
Log in

Microwave Intercalation Synthesis of WO3 Nanoplates and Their NO-Sensing Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Tungsten(VI) oxide (WO3) nanoplates were successfully synthesized by microwave intercalation. Through microwave processing, an intermediate product H2W2O7·xH2O was prepared quickly to greatly decrease the time used to prepare WO3 nanoplates. The crystal structure and morphology of WO3 were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected-area electron diffraction. The morphology of WO3 changed with an increase in calcining temperature. A mixed-potential NO x sensor using planar yttria-stabilized zirconia and WO3 as the sensing electrode (SE) was fabricated, and its performance in NO x detection at high temperature was examined. It was determined that at 500 °C, the sensor with the WO3-nanoplate SE had higher sensitivity to NO than the sensor with a SE consisting of WO3 microparticles. The response of the NO sensor with a WO3-nanoplate SE was linear with the logarithm of NO concentration in the range of 100-1000 ppm. The electrochemical impedance measurements indicate that the electrode reaction that occurred at the triple-phase boundary (TPB) of the sensor with WO3-nanoplate SE was stronger than the reaction that occurred at the TPB of the sensor with WO3-microparticle sensing electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. López-Gándara, J.M. Fernández-Sanjuán, F.M. Ramos, and A. Cirera, Role of Nanostructured WO3 in Ion-Conducting Sensors for the Detection of NO x in Exhaust Gases From Lean Combustion Engines, Solid State Ionics, 2011, 184(1), p 83–87

    Article  Google Scholar 

  2. E. Hawe, C. Fitzpatrick, P. Chambers, G. Dooly, and E. Lewis, Hazardous Gas Detection Using an Integrating Sphere as a Multipass Gas Absorption Cell, Sens. Actuators A, 2008, 141(2), p 414–421

    Article  Google Scholar 

  3. N. Miura, G. Lu, and N. Yamazoe, High-Temperature Potentiometric:Amperometric NO x Sensors Combining Stabilized Zirconia with Mixed-Metal Oxide Electrode, Sens. Actuators B, 1998, 52(1-2), p 169–178

    Article  Google Scholar 

  4. G. Lu, N. Miura, and N. Yamazoe, High-Temperature Sensors for NO and NO2 Based on Stabilized Zirconia and Spinel-Type Oxide Electrodes, J. Mater. Chem., 1997, 7(8), p 1445–1449

    Article  Google Scholar 

  5. S. Zhuiykov, T. Ono, N. Yamazoe, and N. Miura, High-Temperature NO x Sensors Using Zirconia Solid Electrolyte and Zinc-Family Oxide Sensing Electrode, Solid State Ionics, 2002, 152-153, p 801–807

    Article  Google Scholar 

  6. N. Miura, S. Zhuiykov, T. Ono, M. Hasei, and N. Yamazoe, Mixed Potential Type Sensor Using Stabilized Zirconia and ZnFe2O4 Sensing Electrode for NO x Detection at High Temperature, Sens Actuators B, 2002, 83(1-3), p 222–229

    Article  Google Scholar 

  7. C.O. Park, S.A. Akbar, and W. Weppner, Ceramic Electrolytes and Electrochemical Sensors, J. Mater. Sci., 2003, 38(23), p 4639–4660

    Article  Google Scholar 

  8. N. Yamazoe and N. Miura, Potentiometric Gas Sensors for Oxidic Gases, J. Electroceram., 1998, 2(4), p 243–255

    Article  Google Scholar 

  9. N. Miura, K. Akisada, J. Wang, S. Zhuiykov, and T. Ono, Mixed-Potential-Type NO x Sensor Based on YSZ and Zinc Oxide Sensing Electrode, Ionics, 2004, 10(1-2), p 1–9

    Article  Google Scholar 

  10. J.W. Fergus, Materials for High Temperature Electrochemical NO x Gas Sensors, Sens. Actuators B, 2007, 121(2), p 652–663

    Article  Google Scholar 

  11. J.-C. Yang and P.K. Dutta, Solution-Based Synthesis of Efficient WO3 Sensing Electrodes for High Temperature Potentiometric NO x Sensors, Sens. Actuators B, 2009, 136(2), p 523–529

    Article  Google Scholar 

  12. J. Yoo, D. Oh, and E.D. Wachsman, Investigation of WO3-Based Potentiometric Sensor Performance (M/YSZ/WO3, M = Au, Pd, and TiO2) with Varying Counter Electrode, Solid State Ionics, 2008, 179(37), p 2090–2100

    Article  Google Scholar 

  13. J. Yoo, S. Chatterjee, and E.D. Wachsman, Sensing Properties and Selectivities of a WO3/YSZ/Pt Potentiometric NO x Sensor, Sens. Actuators B, 2007, 122(2), p 644–652

    Article  Google Scholar 

  14. J. Tamaki, A. Miyaji, J. Makinodan, S. Ogura, and S. Konishi, Effect of Micro-Gap Electrode on Detection of Dilute NO2 Using WO3 Thin Film Microsensors, Sens. Actuators B, 2005, 108(1-2), p 202–206

    Article  Google Scholar 

  15. G. Lu, N. Miura, and N. Yamazoe, Stabilized Zirconia-Based Sensors Using WO3 Electrode for Detection of NO or NO2, Sens. Actuators B, 2000, 65(1-3), p 125–127

    Article  Google Scholar 

  16. J.-C. Yang and P.K. Dutta, Influence of Solid-State Reactions at the Electrode-Electrolyte Interface on High-Temperature Potentiometric NO x -Gas Sensors, J. Phys. Chem. C, 2007, 111(23), p 8307–8313

    Article  Google Scholar 

  17. S. Bai, K. Zhang, R. Luo, D. Li, A. Chen, and C.C. Liu, Low-Temperature Hydrothermal Synthesis of WO3 Nanorods and Their Sensing Properties for NO2, J. Mater. Chem., 2012, 22, p 12643–12650

    Article  Google Scholar 

  18. S. Fardindoost, A.I. Zad, F. Rahimi, and R. Ghasempour, Pd Doped WO3 Films Prepared by Sol-Gel Process for Hydrogen Sensing, Int. J. Hydrog. Energy, 2010, 35(2), p 854–860

    Article  Google Scholar 

  19. W.-C. Hsu, C.-C. Chan, C.-H. Peng, and C.-C. Chang, Hydrogen Sensing Characteristics of an Electrodeposited WO3 Thin Film Gasochromic Sensor Activated by Pt Catalyst, Thin Solid Films, 2007, 516(2-4), p 407–411

    Article  Google Scholar 

  20. C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranont, and T. Kerdcharoen, Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing, Sensors, 2010, 10(8), p 7705–7715

    Article  Google Scholar 

  21. M.H. Yaacob, M. Breedon, K. Kalantar-zadeh, and W. Wlodarski, Absorption Spectral Response of Nanotextured WO3 Thin Films with Pt Catalyst Towards H2, Sens. Actuators B, 2009, 137(1), p 115–120

    Article  Google Scholar 

  22. D. Chen, L. Gao, A. Yasumori, K. Kuroda, and Y. Sugahara, Size- and Shape-Controlled Conversion of Tungstate-Based Inorganic-Organic Hybrid Belts to WO3 Nanoplates with High Specific Surface Areas, Small, 2008, 4(10), p 1813–1822

    Article  Google Scholar 

  23. D.-L. Chen, H.-L. Wang, R. Zhang, S.-K. Guan, H.-X. Lu, H.-L. Xu, D.-Y. Yang, Y. Sugahara, and L. Gao, Synthesis, Characterization and Formation Mechanism of Single-Crystal WO3 Nanosheets Via an Intercalation-Chemistry-Based Route, Chem. J. Chin. Univ., 2008, 29(7), p 1325–1330 [in Chinese]

    Google Scholar 

  24. D. Chen and Y. Sugahara, Tungstate-Based Inorganic-Organic Hybrid Nanobelts/Nanotubes with Lamellar Mesostructures: Synthesis, Characterization, and Formation Mechanism, Chem. Mater., 2007, 19(7), p 1808–1815

    Article  Google Scholar 

  25. D. Chen, M. Liu, L. Yin, T. Li, Z. Yang, X. Li, B. Fan, H. Wang, R. Zhang, Z. Li, H. Xu, H. Lu, D. Yang, J. Sune, and L. Gao, Single-Crystalline MoO3 Nanoplates: Topochemical Synthesis and Enhanced Ethanol-Sensing Performance, J. Mater. Chem., 2011, 21(25), p 9332–9342

    Article  Google Scholar 

  26. M. Waller, T. Townsend, J. Zhao, E. Sabio, R.L. Chamousis, N.D. Browning, and F.E. Osterloh, Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in the Quantum Confinement Regime, Chem. Mater., 2012, 24(4), p 698–704

    Article  Google Scholar 

  27. M. Kudo, H. Ohkawa, W. Sugimoto, N. Kumada, Z. Liu, O. Terasaki, and Y. Sugahara, A Layered Tungstic Acid H2W2O7·nH2O with a Double-Octahedral Sheet Structure: Conversion Process From an Aurivillius Phase Bi2W2O9 and Structural Characterization, Inorg. Chem., 2003, 42(14), p 4479–4484

    Article  Google Scholar 

  28. D. Chen, X. Hou, T. Li, L. Yin, B. Fan, H. Wang, X. Li, H. Xu, H. Lu, R. Zhang, and J. Sun, Effects of Morphologies on Acetone-Sensing Properties of Tungsten Trioxide Nanocrystals, Sens Actuators B, 2011, 153(2), p 373–381

    Article  Google Scholar 

  29. D. Chen, X. Hou, H. Wen, Y. Wang, H. Wang, X. Li, R. Zhang, H. Lu, H. Xu, S. Guan, J. Sun, and L. Gao, The Enhanced Alcohol-Sensing Response of Ultrathin WO3 Nanoplates, Nanotechnology, 2010, 21(3), p 035501–035512

    Article  Google Scholar 

  30. D. Chen, L. Yin, L. Ge, B. Fan, R. Zhang, J. Sun, and Guosheng Shao, Low-Temperature and Highly Selective NO-Sensing Performance of WO3 Nanoplates Decorated with Silver Nanoparticles, Sens. Actuators B, 2013, 185, p 445–455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Li, Q., Jiang, D. et al. Microwave Intercalation Synthesis of WO3 Nanoplates and Their NO-Sensing Properties. J. of Materi Eng and Perform 24, 274–279 (2015). https://doi.org/10.1007/s11665-014-1250-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1250-y

Keywords

Navigation